// Numbas version: finer_feedback_settings {"name": "SUVAT equations question 5", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "u", "v"], "name": "SUVAT equations question 5", "tags": [], "advice": "

a) We have that $a=\\var{a}$, $u=\\var{u}$, $v=\\var{v}$. We want to find the distance, $s \\mathrm{m}$. We can use the formula $v^2=u^2+2as$ rearranged for $s$.

\n

Therefore

\n

\\begin{align} s & = \\frac{v^2 - u^2}{2a}, \\\\
                       & = \\frac{\\var{v}^2 - \\var{u}^2}{2\\times \\var{a}}, \\\\
                       & = \\var[fractionNumbers]{(v^2 - u^2)/(2*a)} \\mathrm{m}. \\end{align}

\n

So the distance from $A$ to $B$ is $\\var[fractionNumbers]{(v^2 - u^2)/(2*a)} \\mathrm{m}$.

\n

b) We have all the variables now except for $t$. To find the time travelled we can use the majority of the SUVAT equations, however it is best to use $v=u+at$ rearranged for $t$ as we are given $v, u$ and $a$ in the question, just incase the $s$ that was calculated previously was incorrect.

\n

Therefore

\n

\\begin{align} t &= \\frac{v-u}{a}, \\\\
                       &= \\frac{\\var{v}-\\var{u}}{\\var{a}}, \\\\
                       &= \\var[fractionNumbers]{(v-u)/a} \\mathrm{s}. \\end{align}

\n

The time taken for the car to travel from $A$ to $B$ is $\\var[fractionNumbers]{(v-u)/a} \\mathrm{s}$. 

", "rulesets": {}, "parts": [{"prompt": "

Find the distance in $\\mathrm{m}$ from $A$ to $B$.

", "allowFractions": true, "variableReplacements": [], "maxValue": "(v^2-u^2)/(2*a)", "minValue": "(v^2-u^2)/(2*a)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"prompt": "

Find the time taken in seconds to travel from $A$ to $B$.

", "allowFractions": true, "variableReplacements": [], "maxValue": "(v-u)/a", "minValue": "(v-u)/a", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": true, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "

A car is driving alone a straight road from $A$ to $B$ with constant acceleration $\\var{a} \\mathrm{ms^{-2}}$. At point $A$ the car is travelling at $\\var{u} \\mathrm{ms^{-1}}$ in the direction $\\simplify{vec:AB}$. At point $B$ the car is travelling in the same direction with velocity $\\var{v} \\mathrm{ms^{-1}}$.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "v>u"}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(1..6#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": "

acceleration

"}, "u": {"definition": "random(1..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "u", "description": "

initial velocity at point A

"}, "v": {"definition": "random(6..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "v", "description": "

final velocity at point B

"}}, "metadata": {"description": "

Section 2.2 of M1 book. Using v squared formula

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}