// Numbas version: finer_feedback_settings {"name": "SUVAT equations question 7", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "s", "u", "v", "t"], "name": "SUVAT equations question 7", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

a) We have that $a=\\var{a}, u=\\var{u}$ and $s=\\var{s}$. Time is unknown so we use a formula without $t$, this is $v^2=u^2+2as$.

\n

Therefore

\n

\\begin{align} v &= \\sqrt{u^2+2as}, \\\\
                                      &= \\sqrt{\\var{u}^2+\\left(2 \\times \\var{a} \\times \\var{s}\\right)}, \\\\
                                      &= \\sqrt{\\var[fractionNumbers]{u^2+2*a*s}}\\mathrm{ms^{-1}}. \\end{align}

\n

So the speed when she reaches the shop is $\\sqrt{\\var[fractionNumbers]{u^2+2*a*s}} \\mathrm{ms^{-1}}$.

\n

b) We have been given $a,u$ and $s$. Therefore to calculate time, $t$, we should use the equation $s=ut+\\frac{1}{2}at^2$ rearranged for $t$. We could then check our answer using $v=u+at$ rearranged for $t$, with the value of $v$ we found in part a), however if we have made a mistake in the previous part this will affect our answer.

\n

Therefore we have $\\frac{1}{2}at^2 + ut - s = 0$, so to solve for $t$ we can use the quadratic formula $\\frac{-b+\\sqrt{b^2-4ac}}{2a}$, with $b=u, a=\\frac{1}{2}a$ and $c=-s$. Note that we only take the positive root as we are trying to find time.

\n

This becomes

\n

$t = \\frac{-u + \\sqrt{u^2 - \\left(4 \\times \\frac{1}{2}a \\times -s\\right)}}{2 \\times \\frac{1}{2}a}.$

\n

Therefore

\n

$t = \\frac{-\\var{u} + \\sqrt{\\var{u}^2 + \\left(2\\times \\var{a} \\times \\var{s}\\right)}}{\\var{a}} = \\var{precround((-u+sqrt(u^2+2a*s))/a,3)} \\mathrm{s}$ which has been evaluated to 3d.p.

\n

So the time taken to reach the shop is $\\var{precround((-u+sqrt(u^2+2a*s))/a,3)} \\mathrm{s}.$

\n

We can check this using

\n

\\begin{align} v & = u + at, \\\\
                       & = \\var{u} + \\var{a} \\times \\var{precround((-u+sqrt(u^2+2a*s))/a,3)}, \\\\
                       & = \\var{u + a*precround((-u+sqrt(u^2+2a*s))/a,3)}, \\\\
                       & = \\sqrt{\\var[fractionNumbers]{u^2+2*a*s}}\\mathrm{ms^{-1}}. \\end{align}

\n

which is the speed we found in part a).
 

\n

\n

 

", "rulesets": {}, "parts": [{"vsetrangepoints": 5, "prompt": "

What is the speed in $\\mathrm{ms^{-1}}$ of the cyclist when she reaches the shop? (You can input a square root using the sqrt() function, for example sqrt(2) for $\\sqrt{2}$)

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "sqrt({u^2+2*a*s})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"precisionType": "dp", "prompt": "

How long in seconds does it take the cyclist to reach the shop? (Answer to 3d.p.)

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "(-u+(u^2+2*a*s)^(1/2))/a", "strictPrecision": true, "minValue": "(-u+(u^2+2*a*s)^(1/2))/a", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "

A cyclist travels from her home to the shop with constant acceleration $\\var{a} \\mathrm{ms^{-2}}$. The shop is $\\var{s} \\mathrm{m}$ away from her home and she initially travels at $\\var{u} \\mathrm{ms^{-1}}$.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": "t>0"}, "variables": {"a": {"definition": "random(0.5..4#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": "

acceleration

"}, "s": {"definition": "random(10..30#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "s", "description": "

distance

"}, "u": {"definition": "random(5..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "u", "description": "

initial velocity

"}, "t": {"definition": "(-u+(u^2+2*a*s)^(1/2))/a", "templateType": "anything", "group": "Ungrouped variables", "name": "t", "description": ""}, "v": {"definition": "sqrt(u^2+2*a*s)", "templateType": "anything", "group": "Ungrouped variables", "name": "v", "description": ""}}, "metadata": {"description": "

Example 7

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}