// Numbas version: finer_feedback_settings {"name": "SUVAT equations question 12", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["s", "a"], "name": "SUVAT equations question 12", "tags": [], "advice": "

We can model the plant pot as a particle moving in a straight line with a constant acceleration of $9.8ms^{-2}$, as it is accelerating under gravity. We will take the downward direction as the positive direction as the pot is falling downwards.

\n

a) We have $s=\\var{s}, a=\\var{a}$ and $u=0$ as we assume that the initial speed of the pot is zero. We want to find the time it hits the ground, $t$, therefore we can use the formula $s=ut+\\frac{1}{2}at^2$, with $u=0$, rearranged for $t$.

\n

Therefore \\begin{align} s &= ut+\\frac{1}{2}at^2, \\\\
                                      &= \\frac{1}{2}at^2, \\\\
                                   t^2 & = \\frac{2s}{a}, \\\\
                                   t & = \\sqrt{\\frac{2s}{a}}, \\\\
                                     & = \\sqrt{\\frac{2\\times\\var{s}}{\\var{a}}},\\\\
                                     & = \\var{precround(((2*s)/a)^(1/2),3)} \\mathrm{s}. \\end{align} 
The plant pot hits the ground after $\\var{precround(((2*s)/a)^(1/2),3)}$ seconds. 

\n

b) We have $s=\\var{s}, u = 0$ and $a = 9.8$ and we want the speed with which the pot hits the ground, $v$. Therefore we can use the formula $v^2 = u^2 + 2as$.

\n

\\begin{align} v^2 & = u^2 + 2as, \\\\
                           & = 0 + \\left(2 \\times \\var{a} \\times \\var{s}\\right), \\\\
                           & = \\var{precround(2*a*s,3)} \\mathrm{ms^{-1}} \\end{align}

\n

Therefore $v = \\sqrt{\\var{precround(2*a*s,3)}} = \\var{precround((2*a*s)^(1/2),3)} \\mathrm{ms^{-1}}$ so the pot hits the ground at $\\var{precround((2*a*s)^(1/2),3)} \\mathrm{ms^{-1}}$.

", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "

Find the time in $\\mathrm{s}$ (to 3d.p.) it takes for the pot to hit the ground.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "(2*s/a)^(1/2)", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "(2*s/a)^(1/2)", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

Find the speed in $\\mathrm{ms^{-1}}$ (to 3d.p.) with which the pot hits the ground.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "(2*a*s)^(1/2)", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "(2*a*s)^(1/2)", "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "

A plant pot falls off a window ledge which is $\\var{s} \\mathrm{m}$ above the garden floor. The acceleration due to gravity is $g= 9.8 \\mathrm{ms^{-2}}$

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "9.8", "templateType": "number", "group": "Ungrouped variables", "name": "a", "description": "

gravity acting downwards

"}, "s": {"definition": "random(0.5..4#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "s", "description": ""}}, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}