// Numbas version: finer_feedback_settings {"name": "Combining algebraic fractions 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Combining algebraic fractions 4", "tags": ["algebra", "algebraic fractions", "algebraic manipulation", "combining algebraic fractions", "common denominator"], "advice": "\n

The formula for {nb} fractions is :

\n

\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]

\n

and for this exercise we have $\\simplify{a={a}x+{b1}}$, $\\simplify{c={abs(c)}x+{abs(b2)}}$, $\\simplify{b={a1}x+{b}}$, $\\simplify{d={a2}x+{d}}$.

\n

Hence we have:
\\[\\begin{eqnarray*}\\simplify{({a}x+{b1}) / ({a1}*x + {b}) + ({c}x+{b2}) / ({a2}*x + {d})} &=& \\simplify{(({a}x+{b1}) * ({a2}*x + {d}) + ({c}x+{b2}) * ({a1}*x + {b})) / (({a1}*x + {b}) * ({a2}*x + {d}))}\\\\ &=&\\simplify[std]{ (({a*a2} * x^2 + {b1*a2+ a*d}x+{b1*d})+({a1*c}x^2+{b*c+a1*b2}x+{b*b2})) / (({a1}*x + {b}) * ({a2}*x + {d}))}\\\\&=&\\simplify[std]{ ({a*a2 + c*a1} * x^2 + {a * d +a1*b2+b1*a2+ c * b}x+{b1*d+b*b2}) / (({a1}*x + {b}) * ({a2}*x + {d}))}\\end{eqnarray*}\\]

\n ", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers", "!noLeadingMinus"]}, "parts": [{"stepspenalty": 1.0, "prompt": "

Express \\[\\simplify{({a}x+{b1}) / ({a1}x + {b}) + ({c}x+{b2}) / ({a2}x + {d})}\\] as a single fraction.

\n

Input the fraction here: [[0]].

\n

Make sure that you simplify the numerator and that you input it as a quadratic in $x$.

\n

 Click on Show steps for more information. You will lose one mark if you do so.

", "gaps": [{"notallowed": {"message": "

Input as a single fraction.

", "showstrings": false, "strings": [")-", ")+"], "partialcredit": 0.0}, "checkingaccuracy": 1e-05, "vsetrange": [10.0, 11.0], "vsetrangepoints": 5.0, "checkingtype": "absdiff", "answersimplification": "std", "marks": 2.0, "answer": "({a*a2+a1*c}*x^2 + {b*c+a1*b2+b1*a2+a*d} * x + {b1 * d + b2 * b})/ (({a1}*x + {b}) * ({a2}*x + {d}))", "type": "jme", "musthave": {"message": "

Input the numerator as a quadratic in $x$.

", "showstrings": false, "strings": ["^"], "partialcredit": 0.0}}], "steps": [{"prompt": "\n

The formula for {nb} fractions is :
\\[\\simplify[std]{a / b + {s1} * (c / d) = (ad + {s1} * bc) / bd}\\]

\n

and for this exercise we have $\\simplify{a={a}x+{b1}}$, $\\simplify{c={abs(c)}x+{abs(b2)}}$, $\\simplify{b={a1}x+{b}}$, $\\simplify{d={a2}x+{d}}$.

\n

Note that in your answer you do not need to expand the denominator.

\n ", "type": "information", "marks": 0.0}], "marks": 0.0, "type": "gapfill"}], "extensions": [], "statement": "\n

Add the following two fractions together and express as a single fraction over a common denominator.

\n

 

\n \n \n \n ", "variable_groups": [], "progress": "ready", "type": "question", "variables": {"a": {"definition": "random(1..9)", "name": "a"}, "c": {"definition": "random(-9..9 except [0,round(-a*a2/a1)])", "name": "c"}, "b": {"definition": "random(-9..9 except 0)", "name": "b"}, "d": {"definition": "random(-9..9 except [0,round(b*a2/a1)])", "name": "d"}, "nb": {"definition": "if(c<0,'taking away','adding')", "name": "nb"}, "a1": {"definition": "random(2..5)", "name": "a1"}, "a2": {"definition": "random(2..5)", "name": "a2"}, "b1": {"definition": "random(-5..5 except [0,round(a*b/a1)])", "name": "b1"}, "b2": {"definition": "sgn(c)*random(1..5 except [round(c*d/a2)])", "name": "b2"}, "s1": {"definition": "if(c<0,-1,1)", "name": "s1"}}, "metadata": {"notes": "

5/08/2012:

\n

Added tags.

\n

Added description.

\n

Changed to two questions, for the numerator and denomimator, rather than one as difficult to trap student input for this example. Still some ambiguity however.

\n

12/08/2012:

\n

Back to one input of a fraction and trapped input in Forbidden Strings.

\n

Used the except feature of ranges to get non-degenerate examples.

\n

Checked calculation.OK.

\n

Improved display in content areas.

\n

02/02/2013:

\n

Added requirement that the numerator is input as a quadratic. This is following on from changing variable c so that the coefficient of $x^2$ is non zero.

\n

Checked calculations again. OK.

", "description": "

Express $\\displaystyle \\frac{ax+b}{cx + d} \\pm  \\frac{rx+s}{px + q}$ as an algebraic single fraction over a common denominator. 

", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}], "resources": []}]}], "contributors": [{"name": "Bill Foster", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/6/"}]}