// Numbas version: finer_feedback_settings {"name": "Particle in vertical equilibrium, accelerating horizontally", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Force_image.png", "/srv/numbas/media/question-resources/Force_image.png"], ["question-resources/improvement1.png", "/srv/numbas/media/question-resources/improvement1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "K", "FA", "FD", "a2", "K2", "FA2", "downforce", "FD2"], "name": "Particle in vertical equilibrium, accelerating horizontally", "tags": [], "advice": "

a)

\n

To find the resultant force in a certain direction when there is more than one force acting on an object you can resolve the forces. You resolve in the direction of acceleration. Using the letter $R$, with an arrow will indicate the direction the forces are being resolved in, for example $R(\\rightarrow)$.

\n

In this case $R(\\rightarrow)$ means apply $F=ma$ in the positive direction. So we need to resolve the equation 

\n

\\begin{align}F & = ma \\\\
                   C - \\var{FA} & = \\var{K} \\times \\var{a} \\\\
                                  C & = \\var{K*a} + \\var{FA} \\\\
                                       & = \\var{K*a + FA}. \\end{align}

\n

Here the forces, $F=C - \\var{FA}$ because $\\var{FA}$ is acting in the opposite direction to $C$. The mass is $m=\\var{K}$ and the acceleration is $a=\\var{a}$. Therefore $C = \\var{K*a+FA}\\  \\mathrm{N}$.

\n

b)

\n

In this case we resolve in the direction perpendicular to acceleration so we use $R(\\uparrow)$ which means apply $F=ma$ in the vertical direction, where acceleration, $a=0$ because there is no vertical acceration.

\n

\\begin{align} F & = ma \\\\
                    B - \\var{FD}g & = \\var{K} \\times 0 \\\\
                                    B & = 0 + \\left(\\var{FD} \\times 9.8\\right) \\\\
                                       & = \\var{FD*9.8} \\end{align} 
Here the forces, $F=B - \\var{FD}g$ because $\\var{FD}g$ is acting downwards which is the opposite direction to $B$. Therefore $B = \\var{FD*9.8} \\ \\mathrm{N}$.

\n

c)

\n

It is easier to take the positive direction as the direction of the acceleration. Therefore we use $R(\\leftarrow)$ because we are decelerating. 

\n

\\begin{align} F & = ma \\\\
                    \\var{FA2} - C & = \\var{K2} \\times \\var{a2} \\\\
                           C & = \\var{FA2} - \\left( \\var{K2} \\times \\var{a2} \\right) \\\\
                              & = \\var{FA2 - K2*a2}. \\end{align}

\n

Here the forces, $F = \\var{FA2} - C$ because $\\var{FA2}$ is in the direction of acceleration and $C$ is acting in the opposite direction. The mass is $m = \\var{K2}$ and $a=\\var{a2}$. Therefore $C = \\var{FA2 - K2*a2} \\ \\mathrm{N}$.

\n

", "rulesets": {}, "parts": [{"prompt": "

Suppose that the acceleration $a = \\var{a}$ and the mass of the particle $K = \\var{K} \\ \\mathrm{kg}$. Find the force $C \\ \\mathrm{N}$ if $A = \\var{FA}\\ \\mathrm{N}$.

\n

$C = $ [[0]] $\\mathrm{N}$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "K*a+FA", "minValue": "K*a+FA", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"precisionType": "dp", "prompt": "

Find the magnitude of the force $B$ if $D =\\simplify{{FD}g} \\ \\mathrm{N}$.

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "FD*9.8", "minValue": "FD*9.8", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "

Consider another particle which has mass $\\var{K2} \\ \\mathrm{kg}$ and is now decelerating horizontally at $\\var{a2}\\ \\mathrm{ms^{-2}}$. If $A = \\var{FA2}\\ \\mathrm{N}$ what is $C$?

", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "FA2-K2*a2", "minValue": "FA2-K2*a2", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "

Consider the following diagram of a particle of mass $K \\ \\mathrm{kg}$, moving left-to-right. The forces $A, B, C$ and $D$ are acting upon it, producing a horizontal acceleration of $a \\, \\mathrm{ms^{-2}}$ 

\n

\n

The acceleration due to gravity is $9.8 \\, \\mathrm{ms}^{-2}$. Answer all the following questions to 3 decimal places.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(0.5..7#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": "

acceleration

"}, "K2": {"definition": "random(1..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "K2", "description": "

mass 2

"}, "FA2": {"definition": "random(40..80#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "FA2", "description": ""}, "K": {"definition": "random(2..9#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "K", "description": "

mass

"}, "FA": {"definition": "random(0.5..4.5#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "FA", "description": "

Force A

"}, "FD2": {"definition": "K2", "templateType": "anything", "group": "Ungrouped variables", "name": "FD2", "description": "

downforce D 2

"}, "FD": {"definition": "K", "templateType": "anything", "group": "Ungrouped variables", "name": "FD", "description": "

Force D

"}, "downforce": {"definition": "random(3..23#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "downforce", "description": "

downforce for part d)

"}, "a2": {"definition": "random(0.25..5#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a2", "description": "

acceleration

"}}, "metadata": {"description": "

Using $F=ma$ to find magnitudes of unknown forces acting on an accelerating body.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}