// Numbas version: exam_results_page_options {"name": "mass of tetrahedron", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "mass of tetrahedron", "tags": [], "metadata": {"description": "

mass of tetrahedron via integration

", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "

Cosider the tetrahedron bounded by the coordinate planes $x=0$, $y=0$ and $z=0$ and the plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} =1$. Assume that it has a density function $\\rho(x) = \\var{R0}(\\var{a}+x)$. 

", "advice": "

a)

\n

The coordinate surfaces $x=0$, $y=0$ and $z=0$ are given. The plane $\\frac{x}{\\var{a}} + \\frac{y}{\\var{b}} + \\frac{z}{\\var{c}} = 1$ can be rewritten as a functions as follows 

\n

\\[z = f(x,y) = \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]

\n

The surface of $f(x,y)$ intersects the axes at $x=\\var{a}, y=\\var{b}$ and $z=\\var{c}$.

\n

We can write the boundaries of the tetrahedron as 

\n

\\[0<x<\\var{a} \\quad \\mbox{and} \\quad 0 < y<  \\frac{\\var{b}}{\\var{a}}(\\var{a} -x) \\quad\\mbox{and }\\quad 0\\leq z \\leq \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right).\\]

\n

\n

Thus, with mass element $dM = \\rho(x)dV = \\rho(x)dx\\,dy\\,dz$, the total mass is 

\n

\\[M= \\int_T\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
 \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} \\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx = \\frac{5\\cdot\\var{a}^2\\cdot\\var{b}\\cdot\\var{c}\\cdot\\var{R0}}{24}=\\frac{\\simplify{{5*{a^2}*{b}*{c}*{R0}}}}{24}.\\]

\n

\n

b)

\n

We start with the $x$ coordinate.

\n

\\[\\bar x= \\frac{1}{M}\\int_T x\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}x\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} x\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} x\\var{R0}(\\var{a}+x)\\left[ \\frac{\\simplify{{b*c}}}{\\simplify{{2*a^2}}}(\\var{a}-x)^2\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a} x  (\\var{a}+x)\\left[ (\\var{a}-x)^2\\right]\\, dx =
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}x(\\var{a^3} -\\var{a^2}x-\\var{a} x^2 + x^3) \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\int_0^\\var{a}\\var{a^3}x -\\var{a^2}x^2-\\var{a} x^3 + x^4 \\, dx = \\\\[3mm]
\\frac{\\simplify{{R0*b*c}}}{\\simplify{{2*a^2}}M}\\left[\\frac{\\var{a^3}x^2}{2} -\\frac{\\var{a^2}x^3}{3}-\\frac{\\var{a} x^4}{4} + \\frac{x^5}{5} \\right]_0^{\\var{a}}=\\\\[3mm]
\\simplify[fractionNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5/2 - ({a}^5)/3 - {a}^5/4 + {a}^5/5) *{R0*b*c}/{2*a^2*Mass}}.\\]

\n

Simlarly, for $y$ coordinate:

\n

\\[\\bar y = \\frac{1}{M}\\int_T y\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}y\\rho(x)\\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)} y\\var{R0}(\\var{a}+x) \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y \\int_0^{\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right)}  \\,dz\\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} y\\var{c}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{y}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x) \\int_0^{\\frac{\\var{b}}{\\var{a}}(\\var{a} -x)} \\var{c}\\left( y - \\frac{xy}{\\var{a}} - \\frac{y^2}{\\var{b}}\\right) \\,dy\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\frac{\\simplify{{c*b^2}}}{\\simplify{{6*a^3}}}\\left[\\var{a^3}-3\\cdot\\simplify[unitFactor]{{a^2}x} +3\\cdot\\simplify[unitFactor]{{a}x^2}-x^3\\right]\\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a}   (\\var{a}+x)( \\var{a}-x)^3, dx =
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\int_0^\\var{a}\\var{a^4} -2\\cdot\\simplify[unitFactor]{{a^3}x} +2\\cdot\\simplify[unitFactor]{{a}x^3}-x^4 \\, dx =\\\\[3mm]
\\frac{\\simplify{{R0*b^2*c}}}{\\simplify{{6*a^3}}M}\\left[\\simplify[unitFactor]{{a^4}x} - \\simplify[unitFactor]{{a^3}x^2} +\\frac{\\simplify[unitFactor]{{a}x^4}}{2}-\\frac{x^5}{5} \\right]_0^\\var{a} = \\\\[3mm]

\\simplify[fractionNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a}^5 - ({a}^5) + {a}^5 /2- {a}^5/5) *{R0*b^2*c}/{6*a^3*Mass}}.\\]

\n

Finaly, for $z$ coordinate:

\n

\\[\\bar z= \\frac{1}{M}\\int_T z\\,dM = \\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)}z\\rho(x)\\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a}\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)} z\\var{R0}(\\var{a}+x) \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M} \\int_0^\\var{a}\\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}z\\int_0^{\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)}   \\,dy\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} z\\var{b}\\left( 1 - \\frac{x}{\\var{a}} - \\frac{z}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{1}{M}\\int_0^\\var{a} \\var{R0}(\\var{a}+x)\\int_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)} \\var{b}\\left( z - \\frac{xz}{\\var{a}} - \\frac{z^2}{\\var{c}}\\right)\\,dz\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*a}}}{M}\\int_0^\\var{a} (\\var{a}+x) \\left[ \\frac{z^2}{2} - \\frac{xz^2}{\\var{2*a}} - \\frac{z^3}{\\var{3*c}}\\right]_0^{\\frac{\\var{c}}{\\var{a}}(\\var{a} -x)}\\,dx =\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} (\\var{a}+x)(a-x)^3\\,dx =
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\int_0^\\var{a} \\var{a^4}-\\var{2*a^3}x + \\var{2*a}x^3 - x^4\\,dx\\\\[3mm]
\\frac{\\simplify{{R0*c^2}}}{\\simplify{{6*a^2}}M}\\left[\\var{a^4}x -\\frac{\\var{2*a^3}x^2}{2} + \\frac{\\var{a}x^4}{2} - \\frac{x^5}{5}\\right]_0^{\\var{a}}=\\\\[3mm]




\\simplify[fractionNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}} =
\\simplify[fractionNumbers,otherNumbers]{({a^5} -{2*a^5}/2 + {a^5}/2 - {a^5}/5) *{R0*c^2}/{6*a^2*Mass}}.
\\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(1 .. 6#1)", "description": "", "templateType": "randrange", "can_override": false}, "r0": {"name": "r0", "group": "Ungrouped variables", "definition": "random(1 .. 5#1)", "description": "", "templateType": "randrange", "can_override": false}, "massCentrex": {"name": "massCentrex", "group": "Ungrouped variables", "definition": "((a^5/2 - a^5/3 - a^5/4 + a^5/5)*(R0*b*c))/(2*(a^2)*Mass)", "description": "", "templateType": "anything", "can_override": false}, "Mass": {"name": "Mass", "group": "Ungrouped variables", "definition": "(5*{a^2}*{b}*{c}*{R0})/24", "description": "", "templateType": "anything", "can_override": false}, "massCentrey": {"name": "massCentrey", "group": "Ungrouped variables", "definition": "((a^5 - a^5 + a^5/2- a^5/5) *(R0*b^2*c))/(6*a^3*Mass)", "description": "", "templateType": "anything", "can_override": false}, "massCentrez": {"name": "massCentrez", "group": "Ungrouped variables", "definition": "((a^5 - (2*a^5)/2 + a^5/2 - a^5/5)*(R0*c^2))/(6*(a^2)*Mass)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "r0", "Mass", "massCentrex", "massCentrey", "massCentrez"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the mass of the tetrahedron.

\n

(enter your answer as an interger or a fraction)

", "answer": "5*{a^2}*{b}*{c}*{R0}/24", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Find the centre of mass of the tetrahedron:

\n

$\\bar x$ = [[0]]

\n

$\\bar y$ = [[1]]

\n

$\\bar z$ = [[2]]

", "gaps": [{"type": "jme", "useCustomName": true, "customName": "Gap 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrex}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrey}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{massCentrez}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}]}], "contributors": [{"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}