// Numbas version: finer_feedback_settings {"name": "Marlon's copy of Adaptive marking: quadratic equation", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": [], "name": "Marlon's copy of Adaptive marking: quadratic equation", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "
A quadratic function $f(x)$ goes through the points $(\\var{xs[0]},\\var{ys[0]})$, $(\\var{xs[1]},\\var{ys[1]})$ and $(\\var{xs[2]},\\var{ys[2]})$.
\nFind the two roots of $f$. Write the least root first.
\nLeast root: [[0]]
\nGreatest root: [[1]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "a", "minValue": "a", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "b", "minValue": "b", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "1", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Write a quadratic function $g(x)$ whose roots are the values you entered above, with $x^2$ coefficient $1$.
\n$g(x) = $ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [{"variable": "a", "part": "p0g0", "must_go_first": false}, {"variable": "b", "part": "p0g1", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "(x-{a})(x-{b})", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "What is the midpoint of the two roots of $f$?
", "allowFractions": false, "variableReplacements": [{"variable": "roots", "part": "p0", "must_go_first": false}], "maxValue": "mean(roots)", "minValue": "mean(roots)", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "statement": "(This question doesn't make a lot of pedagogic sense, it just shows off how adaptive marking works)
", "variable_groups": [{"variables": ["roots", "a", "b", "xs", "ys"], "name": "Quadratic equation"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "roots[0]", "templateType": "anything", "group": "Quadratic equation", "name": "a", "description": "Least root of the quadratic equation
"}, "xs": {"definition": "shuffle(-5..5 except [a,b])[0..3]", "templateType": "anything", "group": "Quadratic equation", "name": "xs", "description": "Three given x coordinates
"}, "ys": {"definition": "map((x-a)*(x-b),x,xs)", "templateType": "anything", "group": "Quadratic equation", "name": "ys", "description": "y coordinates corresponding to the given x coordinates
"}, "b": {"definition": "roots[1]", "templateType": "anything", "group": "Quadratic equation", "name": "b", "description": "Greatest root of the quadratic
"}, "roots": {"definition": "sort(shuffle(list(-5..5))[0..2])", "templateType": "anything", "group": "Quadratic equation", "name": "roots", "description": ""}}, "metadata": {"notes": "", "description": "Give the student three points lying on a quadratic, and ask them to find the roots.
\nThen ask them to find the equation of the quadratic, using their roots. Error in calculating the roots is carried forward.
\nFinally, ask them to find the midpoint of the roots (just for fun). Error is carried forward again.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}]}], "contributors": [{"name": "Marlon Arcila", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/321/"}]}