// Numbas version: finer_feedback_settings {"name": "Part Integral 4", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Part Integral 4", "tags": [], "metadata": {"description": "

Integration by parts.

", "licence": "All rights reserved"}, "statement": "

Integrate the following expression:

\n

$f_{(x)}=\\frac{\\var{a}}{x^{\\var{b}}}\\var{c}{x}+e^{\\var{d}x}$

", "advice": "

\\[ f_{(x)}=\\frac{\\var{a}}{x^{\\var{b}}}\\var{c}{x}+e^{\\var{d}x} \\]

\n

Each part of the expression can be integrated separately.

\n

\\[\\int{\\frac{\\var{a}}{x^{\\var{b}}}}.dx=\\var{a}\\int{\\frac{1}{x^{\\var{b}}}}.dx=\\var{a}\\int{x^{-\\var{b}}}.dx =\\var{a}\\frac{x^\\var{-b+1}}{\\var{-b+1}}\\]

\n

\\[ \\int{\\var{c}{x}=\\var{c}\\int{x}.dx }=\\var{c}\\frac{x^2}{2}\\]

\n

\\[\\int{e^{\\var{d}x}}.dx = \\frac{e^{\\var{d}x}}{\\var{d}} \\]

\n

\n

Recombine and add the constant of integration

\n

\\[ \\var{a}\\frac{x^\\var{-b+1}}{\\var{-b+1}} \\var{c}\\frac{x^2}{2}+ \\frac{e^{\\var{d}x}}{\\var{d}} +C\\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1 .. 9#1)", "description": "", "templateType": "randrange", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(2 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-9 .. -2#1)", "description": "", "templateType": "randrange", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-10 .. 10#1)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c", "d"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Use C as the constant on integration. Ensure variables and functions are in the numerator of any fractions.

", "alternatives": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "alternativeFeedbackMessage": "", "useAlternativeFeedback": false, "answer": "({a}/{-b+1})*(x^{-b+1})+{c}/2*x^2+e^({d}x)/{d}+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "answer": "({a}*(x^{-b+1})/{-b+1})+{c}*x^2/2+e^({d}x)/{d}+C", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "c", "value": ""}, {"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Brendan Kennedy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/20026/"}]}]}], "contributors": [{"name": "Brendan Kennedy", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/20026/"}]}