// Numbas version: finer_feedback_settings {"name": "Potenser 3", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": [], "name": "Potenser 3", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
Learn from your mistakes and have another attempt by clicking on 'Try another question like this one' until you get full marks.
", "rulesets": {"std": ["all", "!collectNumbers", "fractionNumbers"], "": []}, "parts": [{"stepsPenalty": 0, "prompt": "Regn ut
\n$\\displaystyle{\\left(\\frac{y}{\\var{k}}\\right)^\\var{m+1}} =$[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Husk potensregnereglene
\n$(a\\cdot b)^n = a^n\\cdot b^n$
\n$\\displaystyle{\\left(\\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}}$
\nSe eventuelt denne videoen for hjelp:
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "y^{m+1}/{k}^{m+1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": "0", "prompt": "Regn ut
\n$\\displaystyle{\\left(\\var{a}x\\right)^\\var{n}} =$[[0]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Husk potensregnereglene
\n$(a\\cdot b)^n = a^n\\cdot b^n$
\n$\\displaystyle{\\left(\\frac{a}{b}\\right)^n=\\frac{a^n}{b^n}}$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}^{n}*x^{n}", "marks": "1", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "Skriv så enkelt som mulig:
\n$\\displaystyle{(\\var{b}y)^\\var{-m+1}\\cdot (-\\var{a}y)^\\var{k}} =$[[0]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Husk potensregnereglene
\n$a^n\\cdot a^m=a^{n+m} $
\n$\\displaystyle{\\frac{a^n}{a^m}=a^{n-m}}$
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{b}^{-m+1}*{-a}^{k}*y^{-m+k+1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "Regn ut:
\n$\\displaystyle{\\left(\\var{d}\\cdot a^2\\right)^\\var{l}} = $[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Husk potensregnereglene
\n$a^n\\cdot a^m=a^{n+m} $
\n$\\displaystyle{\\frac{a^n}{a^m}=a^{n-m}}$
\n$\\displaystyle{\\left(a^n\\right)^m=a^{n\\cdot m}}$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{d}^{l}*a^{2*l}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "Skriv så enkelt som mulig:
\n$\\displaystyle{\\frac{\\left(y^\\var{n}z\\right)^{-\\var{m}}\\cdot \\left(y z^\\var{k}\\right)^\\var{m}}{\\left(y^{-\\var{n-1}}z\\right)^\\var{m+1}}} = $[[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Husk potensregnereglene
\n$a^n\\cdot a^m=a^{n+m} $
\n$\\displaystyle{\\frac{a^n}{a^m}=a^{n-m}}$
\n$\\displaystyle{\\left(a^n\\right)^m=a^{n\\cdot m}}$
\nSe eventuelt denne filmsnutten for hjelp:
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "y^{n-1}*z^{-2*m+k*m-1}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "NB! I denne oppgaven kan du uttrykke svaret ved potenser. For eksempel kan du skrive 3^(-2)*x^7 for å få $3^{-2}\\cdot x^7$ og x^2*y for å få $x^2\\cdot y$
", "variable_groups": [{"variables": ["a", "b", "d", "n", "m", "k", "l"], "name": "numerical fractions"}], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..5)", "templateType": "anything", "group": "numerical fractions", "name": "a", "description": ""}, "b": {"definition": "random(2..9)", "templateType": "anything", "group": "numerical fractions", "name": "b", "description": ""}, "d": {"definition": "random(2..5)", "templateType": "anything", "group": "numerical fractions", "name": "d", "description": ""}, "k": {"definition": "random(2..4 except m)", "templateType": "anything", "group": "numerical fractions", "name": "k", "description": ""}, "m": {"definition": "random(2..4)", "templateType": "anything", "group": "numerical fractions", "name": "m", "description": ""}, "l": {"definition": "random(2..4)", "templateType": "anything", "group": "numerical fractions", "name": "l", "description": ""}, "n": {"definition": "random(2..3 except a)", "templateType": "anything", "group": "numerical fractions", "name": "n", "description": ""}}, "metadata": {"description": "Working with powers
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Ida Friestad Pedersen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/792/"}]}]}], "contributors": [{"name": "Ida Friestad Pedersen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/792/"}]}