// Numbas version: finer_feedback_settings {"name": "Factorisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"css": "", "js": ""}, "rulesets": {}, "parts": [{"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "
Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c[0]}-\\var{c[1]}x^2=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "2({c[0]}/2-{c[1]}/2x^2)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c[2]}ab+\\var{c[3]}bc=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "2b*({c[2]}a/2+{c[3]}c/2)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c[4]}a^2+\\var{c[5]}ab=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "2a*({c[4]}a/2+{c[5]}b/2)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$pq^3-p^3q=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "p*q*(q^2-p^2)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c2[0]}x^2y+\\var{c2[1]}xy^4=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "3*x*y*({c2[0]}x/3+{c2[1]}y^3/3)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c3[0]}p^3q-\\var{c3[1]}p^2q^2+\\var{c3[2]}pq^3=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "2*p*q*({c3[0]}p^2/2-{c3[1]}*p*q/2+{c3[2]}q^2/2)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}, {"musthave": {"partialCredit": 0, "strings": ["(", ")"], "message": "Your answer must be factorised
", "showStrings": false}, "variableReplacementStrategy": "originalfirst", "prompt": "$\\var{c2[2]}lm^2-\\var{c2[3]}l^3m^3+\\var{c2[4]}l^2m^4=$
", "scripts": {}, "showCorrectAnswer": true, "showpreview": true, "checkingtype": "absdiff", "answer": "3*l*m^2*({c2[2]}/3-{c2[3]}*l^2*m/3+{c2[4]}l*m^2/3)", "marks": 1, "type": "jme", "answersimplification": "all", "checkvariablenames": true, "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "vsetrange": [0, 1], "vsetrangepoints": 5, "variableReplacements": [], "checkingaccuracy": 0.001}], "metadata": {"description": "Factorising polynomials using the highest common factor
", "licence": "Creative Commons Attribution 4.0 International", "notes": ""}, "variable_groups": [], "variablesTest": {"condition": "", "maxRuns": 100}, "type": "question", "ungrouped_variables": ["c", "c2", "c3"], "variables": {"c2": {"description": "Coefficients in e,f (HCF: 3)
", "templateType": "anything", "name": "c2", "definition": "shuffle([3,3,6,9,15])[0..5]", "group": "Ungrouped variables"}, "c": {"description": "Coefficients in a,b,c (HCF: 2)
", "templateType": "anything", "name": "c", "definition": "shuffle([2,2,6,8,10,14])", "group": "Ungrouped variables"}, "c3": {"description": "Part f (HCF:2)
", "templateType": "anything", "name": "c3", "definition": "shuffle([2,4,6,10,14])[0..3]", "group": "Ungrouped variables"}}, "functions": {}, "advice": "", "tags": [], "name": "Factorisation", "showQuestionGroupNames": false, "question_groups": [{"pickQuestions": 0, "pickingStrategy": "all-ordered", "questions": [], "name": ""}], "statement": "Factorise the following expressions by taking out the highest common factor.
\nMake sure you input an asterisk (*) for multiplication wherever necessary.
\nFor example, $xy$ should be written as $x*y$, and $a(b+c)$ should be written as $a*(b+c)$.
", "contributors": [{"name": "steve kilgallon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/268/"}]}]}], "contributors": [{"name": "steve kilgallon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/268/"}]}