// Numbas version: exam_results_page_options {"name": "Ida Friestad's copy of Vicky's copy of Differentiation 16 - Applications", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "c", "b", "r1", "r2", "mn", "d", "lg2", "lg1", "type1", "mx", "type2", "f1", "f2"], "name": "Ida Friestad's copy of Vicky's copy of Differentiation 16 - Applications", "tags": ["stationary points"], "preamble": {"css": "", "js": ""}, "advice": "

On differentiating we get $\\displaystyle \\frac{df}{dx}=\\simplify[std]{{3*a}x^2+{2*b}x+{c}}$.

\n

To find the stationary points we have to solve $\\displaystyle \\frac{df}{dx}=0$ for $x$.

\n

So we have to solve $\\simplify[std]{{3*a}x^2+{2*b}x+{c}=0}$.

\n

Note that the quadratic factorises and the equation becomes $\\simplify[std]{({3a}x-{r1})(x-{r2})=0}$.

\n

Hence we have two stationary points: $x=\\simplify[std]{{r1}/{3a}}$ and $x=\\var{r2}$.

\n

To find out the types of these stationary points we look at the sign of $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6a}*x+{2*b}}$ at  the stationary points.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\lt 0 $ at a stationary point then it is a MAXIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} \\gt 0 $ at a stationary point then it is a MINIMUM.

\n

If  $\\displaystyle \\frac{d^2f}{dx^2} = 0 $ at a stationary point then we have to do more work!

\n

At $x=\\var{r2}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{6*a*r2+2*b}}${lg1}$0$ hence is a {type1}.

\n

At $\\displaystyle x=\\simplify[std]{{r1}/{3a}}$ we have $\\displaystyle \\frac{d^2f}{dx^2} = \\simplify{{2*r1+2*b}}${lg2}$0$ hence is a {type2}.

\n

 

", "rulesets": {"std": ["all", "fractionNumbers", "!noLeadingMinus", "!collectNumbers"]}, "parts": [{"prompt": "

$f(x)=\\simplify[all,!collectNumbers,!noleadingminus]{{a}x^3+{b}x^2+{c}x+{d}}$

\n

$f'(x)=$ [[2]]

\n

$f''(x)=$ [[3]]

\n

\n

Find when $f'(x)=0$, hence find:

\n

$x$-coordinate of the stationary point giving a minimum $=$ [[0]]

\n

$x$-coordinate of the stationary point giving a maximum $=$ [[1]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{mx*r2}+{(1-mx)}*{(r1)}/{(3*a)}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "std", "scripts": {}, "answer": "{mn*r2}+{(1-mn)}*{(r1)}/{(3*a)}", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3{a}x^2+2{b}x+{c}", "marks": "1", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "6{a}x+2{b}", "marks": "1", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "

Find the coordinates of the stationary points of the function.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(-2..2 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "f1": {"definition": "(-(2{b})-sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "templateType": "anything", "group": "Ungrouped variables", "name": "f1", "description": ""}, "c": {"definition": "r1*r2", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "round(-(3*a*r2+r1)/2)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "r1": {"definition": "random(-4..4#2 except 0)-3*a*r2", "templateType": "anything", "group": "Ungrouped variables", "name": "r1", "description": ""}, "r2": {"definition": "random(-6..6 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "r2", "description": ""}, "mn": {"definition": "if(3a*r2+b<0,1,0)", "templateType": "anything", "group": "Ungrouped variables", "name": "mn", "description": ""}, "f2": {"definition": "(-(2{b})+sqrt((2{b})^2-4(3{a}){c}))/(6{a})", "templateType": "anything", "group": "Ungrouped variables", "name": "f2", "description": ""}, "type2": {"definition": "if(mx=1, 'maximum','minimum')", "templateType": "anything", "group": "Ungrouped variables", "name": "type2", "description": ""}, "lg2": {"definition": "if(mx=0,'$\\\\gt$','$\\\\lt$')", "templateType": "anything", "group": "Ungrouped variables", "name": "lg2", "description": ""}, "lg1": {"definition": "if(mx=0,'$\\\\lt$','$\\\\gt$')", "templateType": "anything", "group": "Ungrouped variables", "name": "lg1", "description": ""}, "type1": {"definition": "if(mx=0, 'maximum','minimum')", "templateType": "anything", "group": "Ungrouped variables", "name": "type1", "description": ""}, "mx": {"definition": "if(3a*r2+b<0,0,1)", "templateType": "anything", "group": "Ungrouped variables", "name": "mx", "description": ""}, "d": {"definition": "random(-10..10)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}}, "metadata": {"notes": "", "description": "

Finding the stationary points of a cubic with two turning points

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Ida Friestad Pedersen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/792/"}]}]}], "contributors": [{"name": "Ida Friestad Pedersen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/792/"}]}