// Numbas version: finer_feedback_settings {"name": "Connected particles 1", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Connected_particles.png", "/srv/numbas/media/question-resources/Connected_particles.png"], ["question-resources/Connected_particles2.png", "/srv/numbas/media/question-resources/Connected_particles2.png"], ["question-resources/Connected_particles3.png", "/srv/numbas/media/question-resources/Connected_particles3.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": "a>0"}, "statement": "

Suppose that there is a light box attached to a vertical light inextensible string. The box holds two masses $A$ and $B$ as shown in the diagram below, where $A$ rests upon $B$.

\n

\n

Suppose that the mass of $A$ is $m_1 = \\var{massa} \\, \\mathrm{kg}$ and the mass of $B$ is $m_2 = \\var{massb} \\, \\mathrm{kg}$. The acceleration due to gravity is $g=9.8 \\, \\mathrm{ms^{-2}}$.

\n

Give your answers to the following questions to 3 decimal places.

", "name": "Connected particles 1", "preamble": {"css": "", "js": ""}, "variables": {"massa": {"name": "massa", "definition": "random(0.25..1.5#0.25)", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}, "massb": {"name": "massb", "definition": "random(1.6..3#0.1)", "description": "", "group": "Ungrouped variables", "templateType": "randrange"}, "a": {"name": "a", "definition": "precround((T-massa*g-massb*g)/mass,3)", "description": "

acceleration 3d.p.

", "group": "Ungrouped variables", "templateType": "anything"}, "mass": {"name": "mass", "definition": "massa+massb", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "g": {"name": "g", "definition": "9.8", "description": "", "group": "Ungrouped variables", "templateType": "anything"}, "T": {"name": "T", "definition": "random(45..80#0.05)", "description": "

tension in string

", "group": "Ungrouped variables", "templateType": "randrange"}}, "extensions": [], "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["massa", "massb", "T", "g", "mass", "a"], "advice": "

a) We can draw a diagram to show the forces acting on the system. As all parts are moving in the same straight line (vertically) we can resolve for the whole system.

\n

\n

We have that 

\n

\\begin{align} T - m_1g - m_2g & = (m_1 + m_2)a, \\\\
                           \\var{T} - \\var{massa}g - \\var{massb}g & = \\var{mass}a, \\\\
                                a & =\\frac{\\var{T} - \\var{massa}g - \\var{massb}g}{\\var{mass}}, \\\\
                                   & = \\var{a}\\mathrm{ms^{-2}}.\\end{align}

\n

The acceleration of the system is $\\var{a}\\mathrm{ms^{-2}}$.

\n

b) To find the force exerted on mass $B$ by mass $A$ we can find the force exerted on $A$ by $B$ (the normal reaction, $R$) and use Newton's 3rd Law to say that the force exerted on $B$ by $A$ will have the same magnitude.

\n

\n

We resolve the forces to find $R$, using the 3d.p. value for $a$ from part a).

\n

\\begin{align} R - m_1g & = m_1a, \\\\
                                    R & = m_1g + m_1a, \\\\
                                       & = \\var{massa} \\left(9.8 + \\var{a}\\right), \\\\
                                        & = \\var{precround(massa*(9.8+a),3)} \\mathrm{N}.\\end{align}

\n

So the force exerted on $B$ by $A$ is $\\var{precround(massa*(9.8+a),3)} \\mathrm{N}$.

\n

c) To find the force exerted on mass $B$ by the box we find the force exerted on the box by $B$ and then use Newton's 3rd Law to say that the force exerted on $B$ by the box has the same magnitude but is in the opposite direction.

\n

Looking only at the box we have

\n

\\begin{align} T - F & = 0 \\times a, \\\\
                       T & = F, \\\\
                         \\var{T} \\mathrm{N} & = F. \\end{align}

\n

Where here $F$ is the force exerted on the box by $B$ and the mass of the box is $0$ as it is modelled as being light.

\n

So the force exerted on $B$ by the box is $\\var{T} \\mathrm{N}$ upwards.

", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Two masses in a box which is attached to a string. Finding acceleration by modelling the two masses as the whole system. Find forces exerted by the two masses.

"}, "functions": {}, "tags": [], "parts": [{"precision": "3", "precisionPartialCredit": 0, "strictPrecision": false, "precisionType": "dp", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0, "minValue": "(T-massa*g-massb*g)/mass", "scripts": {}, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "prompt": "

Suppose that the tension in the string is $\\var{T} \\, \\mathrm{N}$ and that the box is raised vertically, using the string. With what acceleration, in $\\mathrm{ms^{-2}}$, is the box raised?

", "allowFractions": false, "showFeedbackIcon": true, "mustBeReduced": false, "type": "numberentry", "showPrecisionHint": false, "maxValue": "(T-massa*g-massb*g)/mass"}, {"precision": "3", "precisionPartialCredit": 0, "strictPrecision": false, "precisionType": "dp", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0, "minValue": "massa*g+a*massa", "scripts": {}, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "prompt": "

Using the acceleration in $\\mathrm{ms^{-2}}$ found in part a), find the force in Newtons ($\\mathrm{N}$) exerted on mass $B$ by mass $A$.

", "allowFractions": false, "showFeedbackIcon": true, "mustBeReduced": false, "type": "numberentry", "showPrecisionHint": false, "maxValue": "massa*g+a*massa"}, {"precision": "3", "precisionPartialCredit": 0, "strictPrecision": false, "precisionType": "dp", "notationStyles": ["plain", "en", "si-en"], "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "mustBeReducedPC": 0, "minValue": "T", "scripts": {}, "correctAnswerFraction": false, "correctAnswerStyle": "plain", "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "prompt": "

Find the force in Newtons ($\\mathrm{N}$) exerted on mass $B$ by the box.

", "allowFractions": false, "showFeedbackIcon": true, "mustBeReduced": false, "type": "numberentry", "showPrecisionHint": false, "maxValue": "T"}], "type": "question", "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}