// Numbas version: finer_feedback_settings {"name": "Connected particles 2", "extensions": [], "custom_part_types": [], "resources": [["question-resources/pulley1.png", "/srv/numbas/media/question-resources/pulley1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"variablesTest": {"maxRuns": 100, "condition": ""}, "statement": "

Suppose that there are two particles $A$ and $B$, of masses $\\var{A} \\mathrm{kg}$ and $\\var{B} \\mathrm{kg}$ respectively. They are attached to a light inextensible string which passes over a small, smooth, fixed pulley. The masses hang with the string taut. 

\n

In the following answer to 3d.p. and take the acceleration due to gravity as $g = 9.8 \\mathrm{ms^{-2}}$.

", "name": "Connected particles 2", "showQuestionGroupNames": false, "preamble": {"css": "", "js": ""}, "variables": {"A": {"name": "A", "templateType": "randrange", "definition": "random(0.05..1#0.025)", "description": "

mass of particle A

", "group": "Ungrouped variables"}, "ac": {"name": "ac", "templateType": "anything", "definition": "precround((B*g - A*g)/(A+B),3)", "description": "

acceleration

", "group": "Ungrouped variables"}, "g": {"name": "g", "templateType": "anything", "definition": "9.8", "description": "

acceleration due to gravity

", "group": "Ungrouped variables"}, "T": {"name": "T", "templateType": "anything", "definition": "precround(A*g+A*ac,3)", "description": "", "group": "Ungrouped variables"}, "B": {"name": "B", "templateType": "randrange", "definition": "random(1.05..2#0.05)", "description": "

mass of particle B

", "group": "Ungrouped variables"}}, "question_groups": [{"pickQuestions": 0, "name": "", "pickingStrategy": "all-ordered", "questions": []}], "extensions": [], "rulesets": {}, "variable_groups": [], "ungrouped_variables": ["A", "B", "g", "ac", "T"], "advice": "

We can draw a diagram to show all the forces acting on each mass and the pulley, and the acceleration. Here, the mass of particle $A$ is $m_1 \\mathrm{kg} = \\var{A} \\mathrm{kg}$ and the mass of particle $m_2 \\mathrm{kg} = \\var{B} \\mathrm{kg}$. As particle $B$ is heavier the acceletation will act in the direction shown. The tension in the string is $T \\mathrm{N}$ and the force exerted on the string by the pulley is $F \\mathrm{N}$.

\n

\n

a) We can not treat the whole system as a particle because the particles are moving in different directions. Therefore to find the acceleration we need to resolve for each mass separately.

\n

For $A$ we have equation (1):  \\begin{align} T - m_1g & = m_1 a, \\\\
                                                                    T - \\var{A}g & = \\var{A}a. \\end{align}

\n

For $B$ we have equation (2): \\begin{align} m_2g - T & = m_2a, \\\\
                                                                   \\var{B}g - T & = \\var{B}a. \\end{align}

\n

In both (1) and (2) we have resolved in the direction of acceleration.

\n

Adding (1) and (2) we get

\n

\\begin{align} T - \\var{A}g + \\var{B}g - T & = (\\var{A} + \\var{B}) a, \\\\
                          (\\var{B} - \\var{A})g & = (\\var{A} + \\var{B}) a, \\\\ 
                               a & = \\frac{\\var{A} + \\var{B}}{(\\var{B} - \\var{A})g}, \\\\
                                   & = \\var{precround((B*g-A*g)/(A+B),3)} \\mathrm{ms^{-2}}. \\end{align}

\n

The acceleration of each mass is $\\var{precround((B*g-A*g)/(A+B),3)} \\mathrm{ms^{-2}}$.

\n

b) To find the tension in the string we can use our answer to part a) in either equation (1) or (2).

\n

For equation (1) we have

\n

\\begin{align} T - \\var{A}g & = \\var{A}a, \\\\
                      T & = \\var{A} \\times (g + a), \\\\
                         & = \\var{A} \\times (9.8 + \\var{ac}), \\\\
                                       & = \\var{precround(A*(9.8+ac),3)} \\mathrm{N}. \\end{align}

\n

The tension in the string is $\\var{T}\\mathrm{N}$.

\n

c) The force exerted on the pulley by the string is $2T \\mathrm{N} = \\var{precround(2*T,3)} \\mathrm{N}$.

", "type": "question", "metadata": {"licence": "Creative Commons Attribution 4.0 International", "description": "

Connected particle involving a pulley system - can not treat whole system as a whole due to different directions.

"}, "functions": {}, "tags": [], "parts": [{"scripts": {}, "precision": "3", "precisionPartialCredit": 0, "correctAnswerFraction": false, "allowFractions": false, "strictPrecision": false, "showCorrectAnswer": true, "precisionType": "dp", "minValue": "(B*g - A*g)/(A+B)", "prompt": "

Suppose that the system is released from rest. Find, in $\\mathrm{ms^{-2}}$, the acceleration of each mass.

", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "type": "numberentry", "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "maxValue": "(B*g - A*g)/(A+B)"}, {"scripts": {}, "precision": "3", "precisionPartialCredit": 0, "correctAnswerFraction": false, "allowFractions": false, "strictPrecision": false, "showCorrectAnswer": true, "precisionType": "dp", "minValue": "A*g+A*ac", "prompt": "

Using your 3d.p. answer to part a) find the tension in Newtons ($\\mathrm{N}$) in the string.

", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "type": "numberentry", "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "maxValue": "A*g+A*ac"}, {"scripts": {}, "precision": "3", "precisionPartialCredit": 0, "correctAnswerFraction": false, "allowFractions": false, "strictPrecision": false, "showCorrectAnswer": true, "precisionType": "dp", "minValue": "2*T-0.02", "prompt": "

Find the force in Newtons ($\\mathrm{N}$) exerted on the pulley by the string.

", "precisionMessage": "You have not given your answer to the correct precision.", "variableReplacements": [], "marks": 1, "type": "numberentry", "showPrecisionHint": false, "variableReplacementStrategy": "originalfirst", "maxValue": "2*T+0.02"}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}