// Numbas version: finer_feedback_settings {"name": "Find change in speed after force applied for given time", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["mass", "force", "time", "impulse"], "name": "Find change in speed after force applied for given time", "tags": [], "advice": "
The impulse imparted is given by $\\text{impulse} = \\text{force} \\times \\text{time}$.
\nSo we have $\\var{force} \\times \\var{time} = \\var{impulse} \\mathrm{Ns}.$
\nThe Impulse-Momentum Principle states that $\\text{Impulse} = \\text{Final momentum} - \\text{Initial momentum}$.
\nSo we have
\n\\begin{align}
\\var{impulse} & = \\var{mass}v - \\var{mass}u, \\\\
& = \\var{mass}v - 0, \\\\
v & = \\frac{\\var{impulse}}{\\var{mass}}, \\\\
& =\\var{impulse/mass} \\mathrm{ms^{-1}}.
\\end{align}
To 3 significant figures, find the magnitude of the impulse given to the body by the force (in $\\mathrm{Ns}$).
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "force*time", "minValue": "force*time", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "To 3 significant figures, find the final speed of the body in $\\mathrm{ms^{-1}}$.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "impulse/mass", "minValue": "impulse/mass", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "A body of mass $\\var{mass} \\mathrm{kg}$ is initially at rest on a smooth horizontal plane. Suppose that a horizontal force of magnitude $\\var{force} \\mathrm{N}$ acts on the body for $\\var{time} \\mathrm{s}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"mass": {"definition": "random(0.5..8#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "mass", "description": ""}, "force": {"definition": "random(0.5..5#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "force", "description": ""}, "impulse": {"definition": "force*time", "templateType": "anything", "group": "Ungrouped variables", "name": "impulse", "description": ""}, "time": {"definition": "random(2..10#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "time", "description": ""}}, "metadata": {"description": "Use the Impulse-Momentum principle to find the change in speed of an object after a constant force is applied for a given period of time.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}], "resources": []}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}