// Numbas version: finer_feedback_settings {"name": "Find initial speeds of particles given speeds after collision and impulse", "extensions": [], "custom_part_types": [], "resources": [["question-resources/collision.png", "/srv/numbas/media/question-resources/collision.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["A_mass", "B_mass", "A_speed", "B_speed", "impulse", "A_before_speed", "B_before_speed"], "name": "Find initial speeds of particles given speeds after collision and impulse", "tags": [], "advice": "
We can draw a diagram.
\n\nThe impulse applied to both balls is $I = \\var{impulse} \\, \\mathrm{Ns}$, and the speeds after the collision are $v_1 = \\var{A_speed} \\, \\mathrm{ms^{-1}}$ and $v_2 = \\var{B_speed} \\, \\mathrm{ms^{-1}}$ for the balls $A$ and $B$ respectively.
\nTo calculate $u_1$, the speed of ball $A$ before the collision, we use the equation $I = m_1v_1 - m_1u_1$, where $m_1$ is the mass of ball $A$, which is $\\var{A_mass} \\, \\mathrm{kg}$. We resolve in the direction of the impulse, therefore the signs of $v_1$ and $u_1$ will be reversed.
\n\\begin{align}
I & = m_1v_1 - m_1u_1, \\\\
\\var{impulse} & = \\var{A_mass} (v_1 - u_1), \\\\
\\frac{\\var{impulse}}{\\var{A_mass}} & = - \\var{A_speed} - (- u_1), \\\\
u_1 & = \\frac{\\var{impulse}}{\\var{A_mass}} + \\var{A_speed}, \\\\
& = \\var{siground( impulse/A_mass + A_speed,3)} \\, \\mathrm{ms^{-1}}.
\\end{align}
The magnitude of the speed of $A$ before the collision is $\\var{siground( impulse/A_mass + A_speed,3)} \\, \\mathrm{ms^{-1}}$.
\nTo calculate $u_2$, the speed of ball $B$ before the collision we use the equation $I = m_2v_2 - m_2u_2$, where $m_2$ is the mass of ball $B$, which is $\\var{B_mass} \\, \\mathrm{kg}$. We resolve in the direction of the impulse shown in the diagram, which is the same as the direction of the speeds.
\n\\begin{align}
I & = m_2v_2 - m_2u_2, \\\\
\\var{impulse} & = \\var{B_mass} ( \\var{B_speed} - u_2), \\\\
\\frac{\\var{impulse} }{ \\var{B_mass}} & = \\var{B_speed} - u_2, \\\\
u_2 & = \\var{B_speed} - \\frac{\\var{impulse} }{ \\var{B_mass}}, \\\\
& = \\var{siground( B_speed - (impulse/B_mass),3)} \\, \\mathrm{ms^{-1}}.
\\end{align}
If this is positive it means the direction of ball $B$ we assumed is correct; if it is negative it means the ball was originally travelling in the other direction. However we were asked to find the magnitude of the speed so we take our answer as $\\var{B_before_speed} \\, \\mathrm{ms^{-1}}$.
", "rulesets": {}, "parts": [{"precisionType": "sigfig", "prompt": "Find the magnitude of the speed of $A$ before the collision, in $\\mathrm{ms^{-1}}$ to 3 s.f.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "A_before_speed", "minValue": "A_before_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "prompt": "Find the magnitude of the speed of $B$ before the collision, in $\\mathrm{ms^{-1}}$ to 3 s.f.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "B_before_speed", "minValue": "B_before_speed", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "Two balls $A$ and $B$ of mass $\\var{A_mass} \\mathrm{kg}$ and $\\var{B_mass} \\mathrm{kg}$ respectively are moving in the same straight line on a smooth horizontal surface. The balls collide. After the collision both of the balls are moving in the same direction.
\nAfter the collision, the $A$ travels at $\\var{A_speed} \\mathrm{ms^{-1}}$ and $B$ travels at $\\var{B_speed} \\mathrm{ms^{-1}}$. The magnitude of the impulse of $A$ on $B$ is $\\var{impulse} \\mathrm{Ns}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"B_speed": {"definition": "random(3.1..5#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "B_speed", "description": ""}, "B_mass": {"definition": "random(0.5..3#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "B_mass", "description": ""}, "A_mass": {"definition": "random(3.1..5#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_mass", "description": ""}, "A_speed": {"definition": "random(0.5..3#0.1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "A_speed", "description": ""}, "impulse": {"definition": "random(5..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "impulse", "description": ""}, "A_before_speed": {"definition": "(impulse/A_mass)+A_speed", "templateType": "anything", "group": "Ungrouped variables", "name": "A_before_speed", "description": ""}, "B_before_speed": {"definition": "sqrt((B_speed-(impulse/B_mass))^2)", "templateType": "anything", "group": "Ungrouped variables", "name": "B_before_speed", "description": ""}}, "metadata": {"description": "Two particles collide. Given the masses and final speeds of the particles, as well as the impulse imparted on each, find their initial speeds.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}