// Numbas version: finer_feedback_settings {"name": "Trigonometry: application", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a"], "name": "Trigonometry: application", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "", "rulesets": {}, "parts": [{"prompt": "

[[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "{a}/sqrt(3)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

A building has a $\\var{a}$ meter shadow. The line between the top of the buiding and the end of the shadow makes an angle of  $\\frac{\\pi}{6}$ radians. Find the height of the building without using any calculators.

\n

Note: Type sqrt(3) to denote $\\sqrt3$ in your answer.

\n

(Hint: $sin(\\frac{\\pi}{6})=\\frac{1}{2}$ and $cos(\\frac{\\pi}{6})=\\frac{\\sqrt3}{2}$).

\n

\n

\n

\n

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(2..12)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}}, "metadata": {"description": "

Applying trigonometry to find heughts and lengths.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "steve kilgallon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/268/"}]}]}], "contributors": [{"name": "steve kilgallon", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/268/"}]}