// Numbas version: finer_feedback_settings {"name": "Mass held in tension by a string", "extensions": [], "custom_part_types": [], "resources": [["question-resources/statics4.png", "/srv/numbas/media/question-resources/statics4.png"], ["question-resources/statics5.png", "/srv/numbas/media/question-resources/statics5.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["F", "theta", "g", "T", "Tp", "M", "M2"], "name": "Mass held in tension by a string", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
Draw a diagram showing all the forces acting on the bag of mass.
\n\nThe tension $T$ is the same in both sections of the string, and the weight of the mass acts downwards.
\nWe resolve the forces horizontally to get
\n\\begin{align}
T \\cos \\theta - F & = 0, \\\\[0.5em]
T & = \\frac{F}{\\cos \\theta}, \\\\[0.5em]
& = \\frac{\\var{F}}{\\cos \\var{theta}^{\\circ}}, \\\\[0.5em]
& = \\var{precround(F/cos(radians(theta)),3)} \\mathrm{N}.
\\end{align}
The tension in the string is $\\var{precround(F/cos(radians(theta)),3)} \\mathrm{N}.$
\nWe resolve the forces vertically, and use our 3d.p. value of $T$ found in part a) to get
\n\\begin{align}
T + T \\sin \\theta - Mg & = 0, \\\\
Mg & = T + T \\sin \\theta, \\\\[0.5em]
M & = \\frac{T + T \\sin \\theta}{g}, \\\\[0.5em]
& = \\frac{ \\var{Tp} + \\var{Tp} \\sin \\var{theta}^{\\circ}}{9.8}, \\\\[0.5em]
& = \\var{precround( (Tp +Tp*sin(radians(theta)))/9.8,3)} \\mathrm{kg}.
\\end{align}
The mass of the bag is $\\var{precround( (Tp +Tp*sin(radians(theta)))/9.8,3)} \\mathrm{kg}.$
", "rulesets": {}, "parts": [{"prompt": "Find the tension, $T$, in the string in Newtons ($\\mathrm{N}$), to 3d.p.
\n$T = $ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "T", "strictPrecision": false, "minValue": "T", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "Using the value of $T$ found in part a) find $M$, the mass of the bag, in $\\mathrm{kg}$ to 3d.p.
\n$M = $ [[0]]
\n", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.
", "allowFractions": false, "variableReplacements": [], "maxValue": "M", "strictPrecision": false, "minValue": "M", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "A small bag of mass $M \\, \\mathrm{kg}$ is held by a light inextensible string. The ends of the string are attached to two fixed points $A$ and $B$ which are horizontally on the same level. The bag is held in equilibrium by a horizontal force of magnitude $F \\ \\mathrm{N} = \\var{F} \\ \\mathrm{N}$ acting parallel to $AB$. The bag is vertically below $A$ and the angle $A\\hat{B}M$ is $\\theta =\\var{theta}^{\\circ}$.
\n\nThe acceleration due to gravity is $g = 9.8 \\mathrm{ms^{-2}}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"g": {"definition": "9.8", "templateType": "number", "group": "Ungrouped variables", "name": "g", "description": ""}, "F": {"definition": "random(5..15#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "F", "description": ""}, "M": {"definition": "(Tp+Tp*sin(radians(theta)))/g", "templateType": "anything", "group": "Ungrouped variables", "name": "M", "description": "mass using the tension to 3dp
"}, "Tp": {"definition": "precround(T,3)", "templateType": "anything", "group": "Ungrouped variables", "name": "Tp", "description": "T to 3d.p. (answer to part a) students will use this in part b
"}, "T": {"definition": "F/cos(radians(theta))", "templateType": "anything", "group": "Ungrouped variables", "name": "T", "description": "tension
"}, "M2": {"definition": "(T+T*sin(radians(theta)))/g", "templateType": "anything", "group": "Ungrouped variables", "name": "M2", "description": "mass not using T to 3d.p. to check if part b answer is effected.
"}, "theta": {"definition": "random(10..40#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}}, "metadata": {"description": "A mass is hanging from a string, tethered to two points. A horizontal force applied to the mass holds it directly underneath one of the points. Given the magnitude of the force, find the tension in the string and the mass of the bag.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}]}], "contributors": [{"name": "Amy Chadwick", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/505/"}]}