// Numbas version: finer_feedback_settings {"name": "AD1 Factorising a Quadratic (a=1)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "AD1 Factorising a Quadratic (a=1)", "tags": ["factorisation", "Factorisation", "factorising quadratic equations", "Factorising quadratic equations", "taxonomy"], "metadata": {"description": "
Factorise three quadratic equations of the form $x^2+bx+c$.
\nThe first has two negative roots, the second has one negative and one positive, and the third is the difference of two squares.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Factorise the following quadratic equation.
", "advice": "Quadratic equations of the form
\n\\[x^2+bx+c=0\\]
\ncan be factorised to create an equation of the form
\n\\[(x+m)(x+n)=0\\text{.}\\]
\nWhen we expand a factorised quadratic expression we obtain
\n\\[(x+m)(x+n)=x^2+(m+n)x+(m \\times n)\\text{.}\\]
\nTo factorise an equation of the form $x^2+bx+c$, we need to find two numbers which add together to make $b$, and multiply together to make $c$.
\n\nWe need to find two values that add together to make $\\var{v3+v4}$ and multiply together to make $\\var{v3*v4}$.
\n\\[\\begin{align}
\\var{v3} \\times \\var{v4}&=\\var{v3*v4}\\\\
\\var{v3}+\\var{v4}&=\\var{v3+v4}\\\\
\\end{align} \\]
So the factorised form of the equation is
\n\\[\\simplify{(x+{v3})(x+{v4})}=0\\text{.}\\]
\n\nUse this link to find some resources which will help you revise this topic
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"v1": {"name": "v1", "group": "Part A ", "definition": "random(1..10)", "description": "", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Part A ", "definition": "random(2..6 except v1)", "description": "", "templateType": "anything", "can_override": false}, "v4": {"name": "v4", "group": "Part A ", "definition": "random(1..10 except -v3)", "description": "", "templateType": "anything", "can_override": false}, "v5": {"name": "v5", "group": "Part A ", "definition": "random(2..10)", "description": "", "templateType": "anything", "can_override": false}, "v3": {"name": "v3", "group": "Part A ", "definition": "random(-8..-1)", "description": "", "templateType": "anything", "can_override": false}, "v6": {"name": "v6", "group": "Part A ", "definition": "-v5", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part A ", "variables": ["v1", "v2", "v3", "v4", "v5", "v6"]}], "functions": {}, "preamble": {"js": "question.is_factorised = function(part,penalty) {\n penalty = penalty || 0;\n if(part.credit>0) {\n // Parse the student's answer as a syntax tree\n var studentTree = Numbas.jme.compile(part.studentAnswer,Numbas.jme.builtinScope);\n\n // Create the pattern to match against \n // we just want two sets of brackets, each containing two terms\n // or one of the brackets might not have a constant term\n // or for repeated roots, you might write (x+a)^2\n var rule = Numbas.jme.compile('m_all(m_any(x,x+m_pm(m_number),x^m_number,(x+m_pm(m_number))^m_number))*m_nothing');\n\n // Check the student's answer matches the pattern. \n var m = Numbas.jme.display.matchTree(rule,studentTree,true);\n // If not, take away marks\n if(!m) {\n part.multCredit(penalty,'Your answer is not fully factorised.');\n }\n }\n}", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{x^2+{v3+v4}x+{v3*v4}}=0$
\n[[0]] $=0$
\n", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "(x+{v3})(x+{v4})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "(`+-x^$n`? + `+- $n)`* * $z", "partialCredit": 0, "message": "Your answer is not fully factorised.", "nameToCompare": ""}, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Chris Graham", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/369/"}, {"name": "Hannah Aldous", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1594/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}]}