// Numbas version: finer_feedback_settings {"name": "Q2 Constant Acceleration", "extensions": [], "custom_part_types": [], "resources": [["question-resources/Q1.png", "/srv/numbas/media/question-resources/Q1.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["s", "u", "a", "t", "s1", "v1", "t1", "s2", "t2"], "name": "Q2 Constant Acceleration", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
(a)\n

$u = \\var{u};  a = \\var{a};  t = \\var{t};  s = \\,?$

\n
\n

Using $s = ut+\\frac{1}{2}at^{2}$ gives 

\n
\n

$s = (\\var{u} \\times \\var{t})+(\\frac{1}{2}\\times\\var{a}\\times(\\var{t})^{2}) = \\var{precround(s1,3)}\\,$ metres

\n
\n

 

\n
(b)\n

Find the speed of the sprinter after $\\var{t}$ seconds using $v = u + at$

\n
$v = \\var{u}+(\\var{a}\\times\\var{t}) = \\var{precround(v1,3)}\\,ms^{-1}$
\n

 

\n
(c)\n

After the first $\\var{t}$ seconds, the sprinter runs the remainder of the race $(\\var{s}-\\var{precround(s1,3)})\\,$ metres at a constant speed of $\\var{precround(v1,3)}\\,ms^{-1}$

\n
\n

So the time to run the remainder of the race is $\\frac{\\var{s}-\\var{precround(s1,3)}}{\\var{precround(v1,3)}} = \\var{precround(t2,3)}\\,$ seconds

\n
\n

Total time for the $\\var{s}\\,$ metre race is then $\\var{precround(t2,3)}+\\var{t} = \\var{precround(t1,3)}\\,$ seconds

\n
", "rulesets": {}, "parts": [{"prompt": "

The distance travelled by the sprinter in the first $\\var{t}\\,$ seconds = [[0]] metres

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "maxValue": "s1", "strictPrecision": false, "minValue": "s1", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": "0", "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "3", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

The speed of the sprinter at the end of $\\var{t}\\,$ seconds  = [[0]] $ms^{-1}$

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": true, "variableReplacements": [], "maxValue": "v1", "strictPrecision": false, "minValue": "v1", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "2", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

The total time for the race  = [[0]] seconds

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": true, "variableReplacements": [], "maxValue": "t1", "strictPrecision": false, "minValue": "t1", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "3", "scripts": {}, "marks": "5", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

A sprinter emerges from the blocks with an initial speed of $\\var{u}\\,ms^{-1}$ and accelerates uniformly at $\\var{a}\\,ms^{-2}$ for the first $\\var{t}\\,$ seconds of a $\\var{s}\\,$ metre race

\n

The sprinter then maintains a constant speed to the end of the race

\n

Assuming the sprinter moves in a straight line

\n

(a) Find the distance travelled by the sprinter in the first $\\var{t}\\,$ seconds

\n

(b) Find the speed of the sprinter at the end of the first $\\var{t}\\,$ seconds

\n

(c) Find the total time the sprinter takes for the $\\var{s}\\,$ metre race

\n

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "random(1.5..2.5#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "a", "description": ""}, "s2": {"definition": "s-s1", "templateType": "anything", "group": "Ungrouped variables", "name": "s2", "description": ""}, "s1": {"definition": "(u*t)+(0.5*a*t*t)", "templateType": "anything", "group": "Ungrouped variables", "name": "s1", "description": ""}, "t2": {"definition": "((s-s1)/v1)", "templateType": "anything", "group": "Ungrouped variables", "name": "t2", "description": ""}, "t1": {"definition": "((s-s1)/v1)+t", "templateType": "anything", "group": "Ungrouped variables", "name": "t1", "description": ""}, "v1": {"definition": "u+(a*t)", "templateType": "anything", "group": "Ungrouped variables", "name": "v1", "description": ""}, "s": {"definition": "random(100..400#100)", "templateType": "randrange", "group": "Ungrouped variables", "name": "s", "description": ""}, "u": {"definition": "random(3..4#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "u", "description": ""}, "t": {"definition": "random(2..5#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "t", "description": ""}}, "metadata": {"description": "", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Stephen Bowlzer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/206/"}]}]}], "contributors": [{"name": "Stephen Bowlzer", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/206/"}]}