// Numbas version: finer_feedback_settings {"name": "NG3 Add Fractions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "NG3 Add Fractions", "tags": ["adding and subtracting fractions", "adding fractions", "converting between decimals and fractions", "converting integers to fractions", "Fractions", "fractions", "integers", "manipulation of fractions", "subtracting fractions", "taxonomy"], "metadata": {"description": "

Manipulate fractions in order to add and subtract them. The difficulty escalates through the inclusion of a whole integer and a decimal, which both need to be converted into a fraction before the addition/subtraction can take place. 

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Evaluate the following addition, giving the fraction in its simplest form.

", "advice": "

$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}$

\n

To add or subtract fractions, we need to have a common denominator on both fractions.

\n

To get a common denominator, we need to find the lowest common multiple of the two denominators.

\n

The lowest common multiple of $\\var{b_coprime}$ and $\\var{d_coprime}$ is $\\var{lcm}.$

\n

This will be the new denominator, and we need to multiply each fraction individually to ensure we get this denominator. 

\n

For $\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_b}}{\\var{lcm_b}}$ to give $\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}.$

\n

For $\\displaystyle\\frac{\\var{c_coprime}}{\\var{d_coprime}}$, we need to multiply the fraction by $\\displaystyle\\frac{\\var{lcm_d}}{\\var{lcm_d}}$ to give $\\displaystyle\\frac{\\var{clcm_d}}{\\var{lcm}}.$

\n

Now that we have each fraction in terms of a common denominator, we can now add the fractions together. 

\n

$\\displaystyle\\frac{\\var{alcm_b}}{\\var{lcm}}+\\frac{\\var{clcm_d}}{\\var{lcm}}=\\frac{(\\var{alcm_b}+\\var{clcm_d})}{\\var{lcm}}=\\frac{\\var{alcmclcm}}{\\var{lcm}}.$

\n

From this, we can try to simplify the result down by finding the greatest common divisor of the numerator and denominator and dividing the whole fraction by this amount. 

\n

The greatest common divisor of $\\var{alcmclcm}$ and $\\var{lcm}$ is $\\var{gcd}.$

\n

Simplifying using this value gives a final answer of $\\displaystyle\\frac{\\var{num}}{\\var{denom}}.$

\n

Therefore, the expression cannot be simplified further, and $\\displaystyle\\frac{\\var{num}}{\\var{denom}}$ is the final answer.

\n

\n

Find out more about this topic using our resource

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"d_coprime": {"name": "d_coprime", "group": "Part a", "definition": "d/gcd_cd", "description": "", "templateType": "anything", "can_override": false}, "denom": {"name": "denom", "group": "Part a", "definition": "lcm/gcd", "description": "

PART A answer for the denominator of part a

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Part a", "definition": "random(1..5)", "description": "

PART A variable a - random number between 1 and 5.

", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Part a", "definition": "random(5..15)", "description": "

PART A variable d - random number between 5 and 15.

", "templateType": "anything", "can_override": false}, "c_coprimeb_coprime": {"name": "c_coprimeb_coprime", "group": "Part a", "definition": "c_coprime*b_coprime", "description": "

PART A variable c times variable b

", "templateType": "anything", "can_override": false}, "gcd_ab": {"name": "gcd_ab", "group": "Part a", "definition": "gcd(a,b)", "description": "

PART A simplification of fractions in the question.

", "templateType": "anything", "can_override": false}, "lcm_b": {"name": "lcm_b", "group": "Part a", "definition": "lcm/b_coprime", "description": "

PART A lcm of b and d, divided by b

", "templateType": "anything", "can_override": false}, "num": {"name": "num", "group": "Part a", "definition": "alcmclcm/gcd", "description": "

PART A answer for the numerator input

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Part a", "definition": "random(5..10 except d)", "description": "

PART A variable b - random number between 5 and 10 and not the same value as d.

", "templateType": "anything", "can_override": false}, "a_coprimed_coprime": {"name": "a_coprimed_coprime", "group": "Part a", "definition": "a_coprime*d_coprime", "description": "

PART A variable a times variable d

", "templateType": "anything", "can_override": false}, "lcm_d": {"name": "lcm_d", "group": "Part a", "definition": "lcm/d_coprime", "description": "

PART A lcm of b and d, divided by d

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Part a", "definition": "random(1..5)", "description": "

PART A variable c - random number between 1 and 5.

", "templateType": "anything", "can_override": false}, "clcm_d": {"name": "clcm_d", "group": "Part a", "definition": "c_coprime*lcm_d", "description": "

PART A variable c times the lcm of b and d, divided by d

", "templateType": "anything", "can_override": false}, "gcd": {"name": "gcd", "group": "Part a", "definition": "gcd(alcmclcm,lcm)", "description": "

PART A greatest common divisor of the variables alcmclcm and lcm

", "templateType": "anything", "can_override": false}, "alcm_b": {"name": "alcm_b", "group": "Part a", "definition": "a_coprime*lcm_b", "description": "

PART A variable a times the lcm of b and d, divided by b

", "templateType": "anything", "can_override": false}, "a_coprime": {"name": "a_coprime", "group": "Part a", "definition": "a/gcd_ab", "description": "

PART A

", "templateType": "anything", "can_override": false}, "b_coprime": {"name": "b_coprime", "group": "Part a", "definition": "b/gcd_ab", "description": "

PART A 

", "templateType": "anything", "can_override": false}, "gcd_cd": {"name": "gcd_cd", "group": "Part a", "definition": "gcd(c,d)", "description": "

PART A 

", "templateType": "anything", "can_override": false}, "lcm": {"name": "lcm", "group": "Part a", "definition": "lcm(b_coprime,d_coprime)", "description": "

PART A lowest common multiple of variable b_coprime and variable d_coprime.

", "templateType": "anything", "can_override": false}, "alcmclcm": {"name": "alcmclcm", "group": "Part a", "definition": "alcm_b+clcm_d", "description": "

PART A 

", "templateType": "anything", "can_override": false}, "c_coprime": {"name": "c_coprime", "group": "Part a", "definition": "c/gcd_cd", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Part a", "variables": ["a", "a_coprime", "b", "b_coprime", "gcd_ab", "c", "c_coprime", "d", "d_coprime", "gcd_cd", "lcm", "a_coprimed_coprime", "c_coprimeb_coprime", "lcm_b", "lcm_d", "alcm_b", "clcm_d", "alcmclcm", "gcd", "num", "denom"]}], "functions": {}, "preamble": {"js": "", "css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}\n"}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

$\\displaystyle\\frac{\\var{a_coprime}}{\\var{b_coprime}}+\\frac{\\var{c_coprime}}{\\var{d_coprime}}=$ [[0]] [[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "num", "maxValue": "num", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "denom", "maxValue": "denom", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Lauren Richards", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1589/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}, {"name": "Oliver Spenceley", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/23557/"}]}