// Numbas version: finer_feedback_settings {"name": "11: Adv. Integration - Volume of Revolution of Mountain", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"preamble": {"js": "", "css": ""}, "variables": {"a": {"templateType": "anything", "name": "a", "description": "", "group": "Ungrouped variables", "definition": "random(2.5..3.5#0.1)"}, "b": {"templateType": "anything", "name": "b", "description": "", "group": "Ungrouped variables", "definition": "random(3..7)"}, "fractionPart": {"templateType": "anything", "name": "fractionPart", "description": "", "group": "Ungrouped variables", "definition": "(a^2*b^2)/2"}, "ylimit": {"templateType": "anything", "name": "ylimit", "description": "", "group": "Ungrouped variables", "definition": "a*sqrt(b)"}}, "name": "11: Adv. Integration - Volume of Revolution of Mountain", "ungrouped_variables": ["a", "b", "fractionPart", "ylimit"], "variablesTest": {"condition": "", "maxRuns": 100}, "tags": [], "functions": {"drawGraph": {"definition": "var scope = question.scope;\nvar a = scope.variables.a.value;\nvar b = scope.variables.b.value;\nvar div = Numbas.extensions.jsxgraph.makeBoard('600px','400px',\n{boundingBox: [-2,10,b+2,-1],\n axis: true,\n showNavigation: false,\n grid: true\n});\nvar board = div.board;\nvar f = function(x) {\n return b*Math.pow(-x+a,0.5);\n}\n\n var graph = board.create('functiongraph',\n [f, -5, 10]\n );\nboard.update();\nreturn div;", "type": "html", "parameters": [], "language": "javascript"}}, "extensions": ["jsxgraph"], "advice": "

Full worked solution:

\n

$\\begin{array}{rcl}y &=& \\var{a}\\sqrt{-x + \\var{b}}\\\\y^2 &=& \\var{a}^2(-x + \\var{b})\\\\ &=& -\\var{a^2}x + \\var{a^2*b}\\end{array} $

\n

$\\begin{array}{rcl}V &=& \\int\\limits_0^\\var{b}\\left(-\\var{a^2}x + \\var{a^2*b}\\right)\\pi\\space\\text{d}x\\\\&=& \\pi\\left[-\\frac{\\var{a^2}x^2}{2} + \\var{a^2*b}x\\right]_0^\\var{b}\\\\&=& \\pi\\left[ (-\\var{(a^2*b^2)/2} + \\var{a^2*b^2}) - (0 + 0)\\right]\\\\&=& \\simplify[fractionNumbers]{{fractionPart}} \\pi\\end{array}$

", "variable_groups": [], "statement": "

{drawGraph()}

\n

A mountain is modelled by the solid of revolution of the function $x = \\var{a}\\sqrt{-y + \\var{b}}$ rotated about the $y$-axis over the interval $y = [0,\\var{ylimit}]$. Take the limit of y to 2 decimal places.

\n

", "metadata": {"description": "

Use integration to find the volume of revolution of a function to estimate the volume of a mountain.

", "licence": "All rights reserved"}, "parts": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

Calculate the volume of the mountain. Give your answer as an exact fraction or decimal.

\n

Volume = [[0]] $\\pi$

", "gaps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "type": "numberentry", "correctAnswerStyle": "plain", "mustBeReducedPC": 0, "allowFractions": true, "minValue": "({a}^2*{ylimit}^2)/2", "correctAnswerFraction": true, "marks": "3", "mustBeReduced": false, "showFeedbackIcon": true, "notationStyles": ["plain", "en", "si-en"], "variableReplacements": [], "maxValue": "({a}^2*{ylimit}^2)/2", "showCorrectAnswer": true}], "type": "gapfill", "steps": [{"scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

\n

The formula for the volume of revolution of a function about the $y$-axis over the interval $[0, a]$ is:

\n

$V = \\int\\limits_0^a \\pi x^2 \\space\\text{d}y$

\n

We are given that $x = \\var{a}\\sqrt{-y + \\var{b}}$. Square this to find an expression for $x^2$.

", "type": "jme", "checkvariablenames": false, "answer": "{a}^2*({b}-x)", "showCorrectAnswer": true, "expectedvariablenames": [], "marks": 1, "vsetrangepoints": 5, "checkingaccuracy": 0.001, "checkingtype": "absdiff", "showFeedbackIcon": true, "variableReplacements": [], "vsetrange": [0, 1], "showpreview": true}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "prompt": "

Substitute this into the volume of revolution equation and integrate to find an expression for the indefinite integral, i.e. before we substitute values of $y$. What expression should fill in the gap $\\left[ (\\text{ _______ }) \\times \\pi\\right]_0^a$?

", "type": "jme", "checkvariablenames": false, "answer": "-({a}^2x^2)/2 + {a}^2*{b}*x", "showCorrectAnswer": true, "expectedvariablenames": [], "marks": 1, "vsetrangepoints": 5, "checkingaccuracy": 0.001, "checkingtype": "absdiff", "showFeedbackIcon": true, "variableReplacements": [], "vsetrange": [0, 1], "showpreview": true}, {"scripts": {}, "variableReplacementStrategy": "originalfirst", "marks": 0, "prompt": "

We have that the upper limit of integration is $a = \\var{ylimit}$. Substitute $x=\\var{ylimit}$ into the expression in square brackets, then subtract the same expression with $y=0$ substituted instead. Leave your answer in terms of $\\pi$ and you have the final answer for this question.

", "type": "information", "showFeedbackIcon": true, "variableReplacements": [], "showCorrectAnswer": true}], "showFeedbackIcon": true, "variableReplacements": [], "stepsPenalty": "0", "showCorrectAnswer": true}], "rulesets": {}, "type": "question", "contributors": [{"name": "John Hodkinson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/921/"}], "resources": []}]}], "contributors": [{"name": "John Hodkinson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/921/"}]}