// Numbas version: finer_feedback_settings {"name": "Algebra III: factorisation (HCF of polynomials)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "c2", "c3", "squares", "firstsquare", "secondsquare"], "name": "Algebra III: factorisation (HCF of polynomials)", "tags": [], "advice": "

An expression like the one seen in part h) is known as the difference of two squares, i.e. it is of the form $a^2 - b^2$. A very useful result to know is the factorisation of the difference of two squares:

\n

$a^2 - b^2 = (a+b)(a-b)$

\n

We can check that this is correct:

\n

$(a+b)(a-b) = a^2 + ba -ab -b^2$

\n

Since multiplication is a commutative operation, i.e. the order is not important, we have that $ba = ab$, so the middle terms cancel each other out. Therefore:

\n

$a^2 + ba -ab -b^2 = a^2 - b^2$

\n

It can be easy to forget about this handy result. A clue is the use of a square number you are expected to know, such as 36, 64, 81 etc. It is not always as obvious if more algebra is involved, e.g. $f^2 - g^6h^4 = (f + g^3h^2)(f-g^3h^2)$.

", "rulesets": {}, "parts": [{"variableReplacements": [], "prompt": "

$\\var{c[0]}-\\var{c[1]}x^2=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2({c[0]}/2-{c[1]}/2x^2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{c[2]}ab+\\var{c[3]}bc=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2b*({c[2]}a/2+{c[3]}c/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{c[4]}a^2+\\var{c[5]}ab=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2a*({c[4]}a/2+{c[5]}b/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$pq^3-p^3q=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "p*q*(q^2-p^2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{c2[0]}x^2y+\\var{c2[1]}xy^4=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*x*y*({c2[0]}x/3+{c2[1]}y^3/3)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{c3[0]}p^3q-\\var{c3[1]}p^2q^2+\\var{c3[2]}pq^3=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2*p*q*({c3[0]}p^2/2-{c3[1]}*p*q/2+{c3[2]}q^2/2)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{c2[2]}lm^2-\\var{c2[3]}l^3m^3+\\var{c2[4]}l^2m^4=$

", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*l*m^2*({c2[2]}/3-{c2[3]}*l^2*m/3+{c2[4]}l*m^2/3)", "marks": 1, "checkvariablenames": true, "checkingtype": "absdiff", "vsetrange": [0, 1], "musthave": {"message": "

Your answer must be factorised

", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"variableReplacements": [], "prompt": "

$\\var{firstsquare}-\\var{secondsquare}x^2$

", "expectedvariablenames": [], "checkingaccuracy": 0.001, "type": "jme", "showpreview": true, "vsetrangepoints": 5, "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "answer": "({{squares}[0]}+{{squares}[1]}*x)({{squares}[0]}-{{squares}[1]}*x)", "marks": 1, "checkvariablenames": false, "checkingtype": "absdiff", "vsetrange": [0, 1]}], "extensions": [], "statement": "

Factorise the following expressions by taking out the highest common factor.

\n

Make sure you input an asterisk (*) for multiplication wherever necessary.

\n

For example, $xy$ should be written as $x$*$y$, and $a(b+c)$ should be written as $a$*$(b+c)$.

\n

write $x^2$ as $x$^2

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"c": {"definition": "shuffle([2,2,6,8,10,14])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "

Coefficients in a,b,c (HCF: 2)

"}, "firstsquare": {"definition": "squares[0]^2", "templateType": "anything", "group": "Ungrouped variables", "name": "firstsquare", "description": ""}, "secondsquare": {"definition": "squares[1]^2", "templateType": "anything", "group": "Ungrouped variables", "name": "secondsquare", "description": ""}, "c3": {"definition": "shuffle([2,4,6,10,14])[0..3]", "templateType": "anything", "group": "Ungrouped variables", "name": "c3", "description": "

Part f (HCF:2)

"}, "c2": {"definition": "shuffle([3,3,6,9,15])[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": "

Coefficients in e,f  (HCF: 3)

"}, "squares": {"definition": "shuffle(2..7)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "squares", "description": ""}}, "metadata": {"description": "

Factorising polynomials using the highest common factor.

\n

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Nasir Firoz Khan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/909/"}]}]}], "contributors": [{"name": "Nasir Firoz Khan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/909/"}]}