// Numbas version: finer_feedback_settings {"name": "Merryn's copy of Fractions: improper and mixed numerals", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Merryn's copy of Fractions: improper and mixed numerals", "tags": ["Fractions", "fractions", "improper", "mixed numbers", "mixed numerals"], "metadata": {"description": "

Convert between improper fractions and mixed numerals

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "a4": {"name": "a4", "group": "Ungrouped variables", "definition": "random(1..12)", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "b1+random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "(a3*c3+b3)/c3", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..4)", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(1..11)", "description": "", "templateType": "anything", "can_override": false}, "b3": {"name": "b3", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "(a4*c4+b4)/c4", "description": "", "templateType": "anything", "can_override": false}, "a3": {"name": "a3", "group": "Ungrouped variables", "definition": "random(1..5)", "description": "", "templateType": "anything", "can_override": false}, "b4": {"name": "b4", "group": "Ungrouped variables", "definition": "random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "c4": {"name": "c4", "group": "Ungrouped variables", "definition": "b4+random(1..6)", "description": "", "templateType": "anything", "can_override": false}, "c3": {"name": "c3", "group": "Ungrouped variables", "definition": "b3+random(1..7)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(1..11)", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "b2+random(1..6)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a1", "b1", "c1", "a2", "b2", "c2", "a3", "b3", "c3", "ans3", "a4", "b4", "c4", "ans4"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Convert the following improper fractions to mixed numerals (also known as mixed numbers):

\n

Note: Write the whole number part in the first box and the fraction part in the second.
For example, if your answer was $2\\frac{3}{4}$, enter $2$ in the first box and $3/4$ in the second. 

\n

$\\displaystyle\\frac{\\var{a1*c1+b1}}{\\var{c1}}=$[[0]][[1]]

\n

$\\displaystyle\\frac{\\var{a2*c2+b2}}{\\var{c2}}=$[[2]][[3]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Do the division and write your remainder over the original denominator. Simplify the fraction if possible. 

\n

\n
\n

\n

For example, converting $\\frac{21}{9}$ into a mixed numeral, you ask yourself \"how many times does 9 go into 21?\", it goes in twice (since $2\\times 9=18$ but $3\\times 9=27$), with a remainder of 3 (since $21-18=3$). So we can write our answer as $2\\frac{3}{9}$ (which actually means $2+\\frac{3}{9}$). But notice we can simplify the fraction, so we should rewrite our answer as $2\\frac{1}{3}$.

\n

\n
\n

\n

Note: we could have cancelled common factors at the beginning. 

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a1", "maxValue": "a1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b1/c1", "maxValue": "b1/c1", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "a2", "maxValue": "a2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "b2/c2", "maxValue": "b2/c2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Convert the following mixed numerals to improper fractions:

\n

$\\var{a3}\\frac{\\var{b3}}{\\var{c3}}=$[[0]]

\n

$\\var{a4}\\frac{\\var{b4}}{\\var{c4}}=$[[1]]

", "stepsPenalty": "1", "steps": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Multiply the whole number and the denominator, add the numerator, and put it all over the denominator.

\n

\n
\n

\n

For example $2\\frac{3}{4}$ can be written as $\\frac{2\\times 4+3}{4}$ that is, $\\frac{11}{4}$.

\n

\n
\n

\n

To understand why, realise that $2\\frac{3}{4}$ is shorthand for $2+\\frac{3}{4}$ and if we want to add these numbers we need to have a common denominator (recall the denominator of a whole number is 1). Our working could look like this:

\n

\\[2\\tfrac{3}{4}=2+\\frac{3}{4}=\\frac{2\\times 4}{4}+\\frac{3}{4}=\\frac{2\\times 4+3}{4}=\\frac{11}{4}\\]

\n

but in practice we normally don't write anything more than \\[2\\tfrac{3}{4}=\\frac{2\\times 4+3}{4}=\\frac{11}{4}\\]

"}], "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans3", "maxValue": "ans3", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans4", "maxValue": "ans4", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Ben Brawn", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/605/"}, {"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}