// Numbas version: finer_feedback_settings {"name": "Francis 's copy of Solving Quadratic Equations using the Quadratic Formula 4 Questions READY", "extensions": ["stats"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "c", "disc1", "disc2", "disc3", "disc4", "ansmin", "ansplus"], "name": "Francis 's copy of Solving Quadratic Equations using the Quadratic Formula 4 Questions READY", "tags": [], "preamble": {"css": "fraction {\n display: inline-block;\n vertical-align: middle;\n}\nfraction > numerator, fraction > denominator {\n float: left;\n width: 100%;\n text-align: center;\n line-height: 2.5em;\n}\nfraction > numerator {\n border-bottom: 1px solid;\n padding-bottom: 5px;\n}\nfraction > denominator {\n padding-top: 5px;\n}\nfraction input {\n line-height: 1em;\n}\n\nfraction .part {\n margin: 0;\n}\n\n.table-responsive, .fractiontable {\n display:inline-block;\n}\n.fractiontable {\n padding: 0; \n border: 0;\n}\n\n.fractiontable .tddenom \n{\n text-align: center;\n}\n\n.fractiontable .tdnum \n{\n border-bottom: 1px solid black; \n text-align: center;\n}\n\n\n.fractiontable tr {\n height: 3em;\n}", "js": "document.createElement('fraction');\ndocument.createElement('numerator');\ndocument.createElement('denominator');"}, "advice": "

Worked example using Part a:

\n

Find the roots of $\\simplify{{a[0]}*x^2+{b[0]}*x+{c[0]}}=0$.

\n

The quadratic formula is given by $x = \\dfrac{-b\\pm\\sqrt{b^2-4ac}}{2a}$

\n

To solve this, simply input the numbers from the equation into the formula, defining the coefficient of $x^2$ as $a$, the coefficient of $x$ as $b$, and the constant as $c$.

\n

Here,  $x=$  $-(\\var{b[0]})$$\\pm$$\\sqrt{(\\var{b[0]})^2-4(\\var{a[0]}\\times\\var{c[0]})}$$2\\times\\var{a[0]}$

\n

Inputting these figures into a calculator, starting with the minus sign before the root, gives:  $x=\\var{ansmin}$,

\n

and using the positive root version gives the other solution:  $x=\\var{ansplus}$.

", "rulesets": {}, "parts": [{"prompt": "

Find the roots of $\\simplify{{a[0]}*x^2+{b[0]}*x+{c[0]}}=0$.

\n

Give your answers in ascending order to four significant figures.

\n

$x=$ [[0]] and $x=$ [[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[0]}-sqrt({b[0]}^2-4*{a[0]}*{c[0]}))/(2*{a[0]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": "1", "minValue": "(-{b[0]}-sqrt({b[0]}^2-4*{a[0]}*{c[0]}))/(2*{a[0]})-0.0005", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[0]}+sqrt({b[0]}^2-4*{a[0]}*{c[0]}))/(2*{a[0]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": 1, "minValue": "(-{b[0]}+sqrt({b[0]}^2-4*{a[0]}*{c[0]}))/(2*{a[0]})-0.0005", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find the roots of $\\simplify{{a[1]}*x^2+{b[1]}*x+{c[1]}}=0$.

\n

Give your answers in ascending order to four significant figures.

\n

$x=$ [[0]] and $x=$ [[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[1]}-sqrt({b[1]}^2-4*{a[1]}*{c[1]}))/(2*{a[1]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": "1", "minValue": "(-{b[1]}-sqrt({b[1]}^2-4*{a[1]}*{c[1]}))/(2*{a[1]})-0.0005", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[1]}+sqrt({b[1]}^2-4*{a[1]}*{c[1]}))/(2*{a[1]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": 1, "minValue": "(-{b[1]}+sqrt({b[1]}^2-4*{a[1]}*{c[1]}))/(2*{a[1]})-0.0005", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find the roots of $\\simplify{{a[2]}*x^2+{b[2]}*x+{c[2]}}=0$.

\n

Give your answers in ascending order to four significant figures.

\n

$x=$ [[0]] and $x=$ [[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[2]}-sqrt({b[2]}^2-4*{a[2]}*{c[2]}))/(2*{a[2]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": "1", "minValue": "(-{b[2]}-sqrt({b[2]}^2-4*{a[2]}*{c[2]}))/(2*{a[2]})-0.0005", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[2]}+sqrt({b[2]}^2-4*{a[2]}*{c[2]}))/(2*{a[2]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": 1, "minValue": "(-{b[2]}+sqrt({b[2]}^2-4*{a[2]}*{c[2]}))/(2*{a[2]})-0.0005", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Find the roots of $\\simplify{{a[3]}*x^2+{b[3]}*x+{c[3]}}=0$.

\n

Give your answers in ascending order to four significant figures.

\n

$x=$ [[0]] and $x=$ [[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "sigfig", "precisionMessage": "

You have not given your answer to the correct precision.

", "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[3]}-sqrt({b[3]}^2-4*{a[3]}*{c[3]}))/(2*{a[3]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": "1", "minValue": "(-{b[3]}-sqrt({b[3]}^2-4*{a[3]}*{c[3]}))/(2*{a[3]})-0.0005", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "sigfig", "integerPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "precision": "4", "maxValue": "(-{b[3]}+sqrt({b[3]}^2-4*{a[3]}*{c[3]}))/(2*{a[3]})+0.0005", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": "50", "scripts": {}, "marks": 1, "minValue": "(-{b[3]}+sqrt({b[3]}^2-4*{a[3]}*{c[3]}))/(2*{a[3]})-0.0005", "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": ["stats"], "statement": "

\n

Solve the following quadratic equations by simplifying into two linear factors if possible  OR using the quadratic formula:  $x = \\dfrac{-b\\pm\\sqrt{b^2-4ac}}{2a}$

\n

\n

", "variable_groups": [], "variablesTest": {"maxRuns": "167", "condition": "disc1>=0\nand\ndisc2>=0\nand\ndisc3>=0\nand\ndisc4>=0"}, "variables": {"a": {"definition": "repeat(random(1..5),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "c": {"definition": "repeat(random(-20..20),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "repeat(random(-10..10),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "ansmin": {"definition": "siground((-b[0] - sqrt(b[0]^2-4a[0]*c[0]))/(2*a[0]),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "ansmin", "description": ""}, "disc1": {"definition": "b[0]^2-4*a[0]*c[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "disc1", "description": ""}, "disc2": {"definition": "b[1]^2-4*a[1]*c[1]", "templateType": "anything", "group": "Ungrouped variables", "name": "disc2", "description": ""}, "disc3": {"definition": "b[2]^2-4*a[2]*c[2]", "templateType": "anything", "group": "Ungrouped variables", "name": "disc3", "description": ""}, "disc4": {"definition": "b[3]^2-4*a[3]*c[3]", "templateType": "anything", "group": "Ungrouped variables", "name": "disc4", "description": ""}, "ansplus": {"definition": "siground((-b[0] + sqrt(b[0]^2-4a[0]*c[0]))/(2*a[0]),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "ansplus", "description": ""}}, "metadata": {"description": "

Selection of Quadratic Equations to Solve

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Francis Duah", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/339/"}]}]}], "contributors": [{"name": "Francis Duah", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/339/"}]}