// Numbas version: finer_feedback_settings {"name": "NS03 Standard Form (Calculations)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "NS03 Standard Form (Calculations)", "tags": [], "metadata": {"description": "

Calculations involving Standard form.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "", "advice": "

To divide two numbers in standard form we can calculate the division of each part of the standard form number separately. In general we have,

\n

\\[\\frac{x\\times10^j}{y\\times10^k}=\\frac xy\\times\\frac{10^j}{10^k}=\\frac xy\\times 10^{j-k}\\]

\n

\n

In this question we therefore have,

\n

\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=\\frac{\\var{a}}{\\var{b}}\\times\\frac{10^{\\var{n}}}{10^{\\var{m}}}=\\var{aDivBRound}\\times10^\\var{n-m}.\\]

\n
\n

Since {aDivBRound} is less than 1 then our answer isn't in standard form. In this case we need to reduce the exponent by 1 so the final answer is

\n

\\[\\var{MantAnsRound}\\times10^{\\var{ExponentAns}}.\\]

\n
\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(1..9.9 # 0.1)", "description": "", "templateType": "anything", "can_override": false}, "n": {"name": "n", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(-10..10)", "description": "", "templateType": "anything", "can_override": false}, "IsADivBLessOne": {"name": "IsADivBLessOne", "group": "Ungrouped variables", "definition": "a/b<1", "description": "", "templateType": "anything", "can_override": false}, "ExponentAns": {"name": "ExponentAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne,n-m-1,n-m)", "description": "", "templateType": "anything", "can_override": false}, "MantAns": {"name": "MantAns", "group": "Ungrouped variables", "definition": "if(IsADivBLessOne, a/b*10, a/b)", "description": "", "templateType": "anything", "can_override": false}, "aDivBRound": {"name": "aDivBRound", "group": "Ungrouped variables", "definition": "precround(a/b,2)", "description": "", "templateType": "anything", "can_override": false}, "MantAnsRound": {"name": "MantAnsRound", "group": "Ungrouped variables", "definition": "precround(MantAns,2)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "n", "m", "IsADivBLessOne", "ExponentAns", "MantAns", "aDivBRound", "MantAnsRound"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

For the equation

\n

\\[\\frac{\\var{a}\\times10^{\\var{n}}}{\\var{b}\\times10^{\\var{m}}}=a\\times10^n\\]

\n

find the values of $a$ and $n$ which keep the answer in standard form.

\n

Give $a$ to two decimal places.

\n

$a=$[[0]]

$n=$[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "MantAns", "maxValue": "MantAns", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ExponentAns", "maxValue": "ExponentAns", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}