// Numbas version: finer_feedback_settings {"name": "CB5 - Finding turning points", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "CB5 - Finding turning points", "tags": [], "metadata": {"description": "
Finding the stationary points of a cubic equation and determining their nature.
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Given the function \\[ \\simplify{y={a}x^3+{b}x^2+{c}x+{d}} ,\\] find its stationary points and determine their nature.
", "advice": "To find the stationary points of the function, we must solve $\\tfrac{dy}{dx}=0$ for $x$. For the function $\\simplify{y={a}x^3+{b}x^2+{c}x+{d}}$,
\n\\[ \\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}. \\]
\nSetting $\\frac{dy}{dx}=0$ and solving for $x$:
\n\\[ \\simplify{{3a}x^2+{2b}x+{c}} =0 \\\\ \\\\ \\implies x=\\var{solx1dp} \\var{x1} \\text{ and } x=\\var{solx2dp} \\var{x2}. \\]
\nHence, the function has two stationary points at $x=\\var{solx1dp}$ and $x=\\var{solx2dp}$. To find the corresponding $y$-coordinates, we want to plug these values back into the initial equation.
\nWhen $x=\\var{solx1dp}$,
\n\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx1dp})^3+{b}*({solx1dp})^2+{c}*({solx1dp})+{d}} \\\\ &\\,=\\simplify{{soly1dp}} \\var{y1}. \\end{split} \\]
\nWhen $x=\\var{solx2dp}$,
\n\\[ \\begin{split} y &\\,= \\simplify[unitFactor,!cancelTerms]{{a}*({solx2dp})^3+{b}*({solx2dp})^2+{c}*({solx2dp})+{d}} \\\\ &\\,=\\simplify{{soly2dp}} \\var{y2}. \\end{split} \\]
\nTherefore, the stationary points of $y=\\simplify{{a}x^3+{b}x^2+{c}x+{d}}$ are
\n\\[ (\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}}) \\, , \\,(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}}). \\]
\nFinally, we need to determine the nature of the stationary points. To do this we want to calculate the second derivative of the initial function and then evaluate it for each $x$-value of the stationary points.
\nRecall:
\nTo calculate $\\tfrac{d^2y}{dx^2}$, we want to differentiate $\\tfrac{dy}{dx}$ again with respect to $x$:
\n\\[ \\begin{split} &\\frac{dy}{dx} = \\simplify{{3a}x^2+{2b}x+{c}}, \\\\ \\\\\\implies &\\frac{d^2y}{dx^2} = \\simplify{{6a}x+{2b}}. \\end{split}\\]
\nFor $(\\simplify{{solx1dp}},\\, \\simplify{{soly1dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check}}$, so it is a minimum.
\nFor $(\\simplify{{solx2dp}},\\, \\simplify{{soly2dp}})$, $\\frac{d^2y}{dx^2} = \\simplify{{check2}}$, so it is a maximum.
\n\nUse this link to find some resources which will help you revise this topic.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1..3)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-5..5)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(-7..7)", "description": "", "templateType": "anything", "can_override": false}, "d": {"name": "d", "group": "Ungrouped variables", "definition": "random(-5..5 except b)", "description": "", "templateType": "anything", "can_override": false}, "solx1": {"name": "solx1", "group": "Ungrouped variables", "definition": "(-2b+sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "solx2": {"name": "solx2", "group": "Ungrouped variables", "definition": "(-2b-sqrt((2b)^2-12*a*c))/(6a)", "description": "", "templateType": "anything", "can_override": false}, "check": {"name": "check", "group": "Ungrouped variables", "definition": "precround(6a*solx1+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "check2": {"name": "check2", "group": "Ungrouped variables", "definition": "precround(6a*solx2+2b,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1": {"name": "soly1", "group": "Ungrouped variables", "definition": "a*(solx1)^3+b*(solx1)^2+c*solx1+d", "description": "", "templateType": "anything", "can_override": false}, "soly2": {"name": "soly2", "group": "Ungrouped variables", "definition": "a*(solx2)^3+b*(solx2)^2+c*solx2+d", "description": "", "templateType": "anything", "can_override": false}, "solx1dp": {"name": "solx1dp", "group": "Ungrouped variables", "definition": "precround(solx1,2)", "description": "", "templateType": "anything", "can_override": false}, "solx2dp": {"name": "solx2dp", "group": "Ungrouped variables", "definition": "precround(solx2,2)", "description": "", "templateType": "anything", "can_override": false}, "soly1dp": {"name": "soly1dp", "group": "Ungrouped variables", "definition": "precround(soly1,2)", "description": "", "templateType": "anything", "can_override": false}, "soly2dp": {"name": "soly2dp", "group": "Ungrouped variables", "definition": "precround(soly2,2)", "description": "", "templateType": "anything", "can_override": false}, "x1": {"name": "x1", "group": "Ungrouped variables", "definition": "if(round(solx1)=solx1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "if(round(solx2)=solx2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y1": {"name": "y1", "group": "Ungrouped variables", "definition": "if(round(soly1)=soly1,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}, "y2": {"name": "y2", "group": "Ungrouped variables", "definition": "if(round(soly2)=soly2,'','(2 d.p.)')", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "b^2>3*a*c", "maxRuns": "100"}, "ungrouped_variables": ["a", "b", "c", "d", "solx1", "soly1", "solx2", "soly2", "check", "check2", "solx1dp", "solx2dp", "soly1dp", "soly2dp", "x1", "x2", "y1", "y2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "There is a minimum point at ([[0]], [[1]]) and a maximum point at ([[2]] , [[3]]).
\n(Give the coordinates of the stationary points to 2 decimal places where necessary.)
", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly1dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{solx2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{soly2dp}", "showPreview": false, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}]}], "contributors": [{"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}