// Numbas version: finer_feedback_settings {"name": "Algebra : Solving Linear Equations (basic)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "af", "b", "c", "d", "f", "g"], "name": "Algebra : Solving Linear Equations (basic)", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "

In part a)

\n

$\\simplify{x+{b[0]}={c[0]}}$

\n

On isolating $x$ to one side,

\n

$x= \\var{c[0]}-\\var{b[0]}$

\n

$x= \\var{d}$

\n

\n

In part b)

\n

$\\simplify{{a[1]}x={c[1]}}$

\n

Solve for $x$,

\n

$x= \\frac{\\var{c[1]}}{\\var{a[1]}}$

\n

$x= \\var{f}$

\n

\n

In part c)

\n

$\\simplify{{a[2]}/{af}x={c[2]}}$

\n

$x= \\frac{\\var{c[2]}*\\var{af}}{\\var{a[2]}}$

\n

$x= \\var{g}$

\n

\n

The video below explains how to carry out similar problems.

\n

", "rulesets": {}, "parts": [{"prompt": "

$\\simplify{x+{b[0]}={c[0]}}$

\n

$x=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "{c[0]}-{b[0]}", "minValue": "{c[0]}-{b[0]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

$\\simplify{{a[1]}x={c[1]}}$

\n

$x=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": true, "variableReplacements": [], "maxValue": "{c[1]}/{a[1]}", "strictPrecision": false, "minValue": "{c[1]}/{a[1]}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"stepsPenalty": 0, "prompt": "

$\\simplify{{a[2]}/{af}x={c[2]}}$

\n

$x=$ [[0]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "

When the coefficient of $x$ is a fraction, you follow the same steps but have to consider how we divide by a fraction.

\n

For example,

\n

We start with: $\\frac{3}{4}x=6$

\n

We 'divide both sides' by the coefficient of $x$: $\\frac{\\frac{3}{4}x}{\\frac{3}{4}}=\\frac{6}{\\frac{3}{4}}$

\n

The coefficient of $x$ cancels: $x=\\frac{6}{\\frac{3}{4}}$

\n

Now, to divide $6$ by $\\frac{3}{4}$, you can also multipliy $6$ by the fraction reciprocal (flipped): $x=6\\times\\frac{4}{3}$

\n

When simplified, we're left with the final answer: $x=8$

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "maxValue": "{c[2]}{af}/{a[2]}", "strictPrecision": false, "minValue": "{c[2]}{af}/{a[2]}", "variableReplacementStrategy": "originalfirst", "precisionPartialCredit": 0, "correctAnswerFraction": false, "showCorrectAnswer": true, "precision": "2", "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": [], "statement": "

Evaluate $x$ in the following equations (give your answer correct to two decimal places when the answer isn't an integer).

\n

If you are not familiar with solving these kinds of equations, study this video for the basic theory.

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"a": {"definition": "repeat(random(3..6),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": "

coefficient of x on lhs

"}, "c": {"definition": "repeat(random(5..15 except 14 except 12 except 7),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "

constant on rhs

"}, "b": {"definition": "repeat(random(-10..10 except 0 except 1 except 2 except -1 except -2 except 6 except -6),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": "

constant on lhs

"}, "d": {"definition": "c[0]-b[0]", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "g": {"definition": "precround(((c[2]*{af})/a[2]),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "g", "description": ""}, "f": {"definition": "precround((c[1]/a[1]),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "f", "description": ""}, "af": {"definition": "random(2..6 except a)", "templateType": "anything", "group": "Ungrouped variables", "name": "af", "description": "

coefficient denominator

"}}, "metadata": {"description": "

Basic solving of linear equations.

", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Nasir Firoz Khan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/909/"}]}]}], "contributors": [{"name": "Nasir Firoz Khan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/909/"}]}