// Numbas version: finer_feedback_settings
{"name": "2.2.1 Task 1", "extensions": ["jsxgraph"], "custom_part_types": [], "resources": [["question-resources/HELM2_2_Figure7.png", "/srv/numbas/media/question-resources/HELM2_2_Figure7.png"], ["question-resources/HELM2_2_Task1b.png", "/srv/numbas/media/question-resources/HELM2_2_Task1b.png"], ["question-resources/HELM2_2_Figure8.png", "/srv/numbas/media/question-resources/HELM2_2_Figure8.png"], ["question-resources/HELM2_2_Task2.png", "/srv/numbas/media/question-resources/HELM2_2_Task2.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "2.2.1 Task 1", "tags": [], "metadata": {"description": "
Draw a graph of y=x^3 by plotting points. Part of HELM book 2.2.1
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Draw a graph of $y=x^3$ via the following steps.
", "advice": "\n\n\n\ninput, $x$ | \n $-3$ | \n $-2$ | \n $-1$ | \n $0 $ | \n $1$ | \n $2$ | \n $3 $ | \n
\n\noutput, $f(x)$ | \n$-27$ | \n$-8$ | \n$-1$ | \n$0$ | \n$1$ | \n$8$ | \n$27$ | \n
\n\n
\n\n{xcubed}
", "rulesets": {}, "extensions": ["jsxgraph"], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"xcubed": {"name": "xcubed", "group": "Ungrouped variables", "definition": "jessiecode(250, 250, [-4, 30, 4, -30], safe(\"\"\"\n functiongraph(function(x){return x^3;}, -8, 8) <>; \n point(-3,-27) <>;\n point(-2,-8) <>;\n point(-1,-1) <>;\n point(0,0) <>;\n point(1,1) <>;\n point(2,8) <>;\n point(3,27) <>;\n \"\"\")\n)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["xcubed"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": true, "customName": "a)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Draw up a table of values of the function $f(x) = x^3$ for $x$ between $−3$ and $3$.
\n\n\n\ninput, $x$ | \n $-3$ | \n $-2$ | \n $-1$ | \n $0 $ | \n $1$ | \n $2$ | \n $3 $ | \n
\n\noutput, $f(x)$ | \n$-27$ | \n$-8$ | \n[[0]] | \n[[1]] | \n[[2]] | \n[[3]] | \n$27$ | \n
\n\n
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "x is -1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-1", "maxValue": "-1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "x is 0", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "0", "maxValue": "0", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "x is 1", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "1", "maxValue": "1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": true, "customName": "x is 2", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "8", "maxValue": "8", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "information", "useCustomName": true, "customName": "b)", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Draw a graph: add your points to the graph and draw a smooth curve through them:
\n\n"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}]}], "contributors": [{"name": "Merryn Horrocks", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4052/"}]}