// Numbas version: finer_feedback_settings {"name": "ElQ2 - Steady State & Step Response - Randomised Variables Only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q2c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2c.png"], ["question-resources/SbE_CC1_Q2b_aIYsTQF.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2b_aIYsTQF.png"], ["question-resources/SbE_CC1_Q2d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2d.png"], ["question-resources/SbE_CC1_Q2a.png", "/srv/numbas/media/question-resources/SbE_CC1_Q2a.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "ElQ2 - Steady State & Step Response - Randomised Variables Only", "tags": [], "metadata": {"description": "

Question covering DC and Step response circuits

", "licence": "All rights reserved"}, "statement": "

Steady State & Step Response

", "advice": "

See Spread Sheet

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"Q2b_R3": {"name": "Q2b_R3", "group": "Ungrouped variables", "definition": "q2b_rs1", "description": "

M

\n

", "templateType": "anything", "can_override": false}, "Q2b_Resistivity": {"name": "Q2b_Resistivity", "group": "Ungrouped variables", "definition": "random(640 .. 640#10)", "description": "

Resistivity of Silicon (Ωm)

", "templateType": "randrange", "can_override": false}, "Q2b_VS": {"name": "Q2b_VS", "group": "Ungrouped variables", "definition": "random(9 .. 12#1)", "description": "

Supply Voltage V

", "templateType": "randrange", "can_override": false}, "Q2b_R1": {"name": "Q2b_R1", "group": "Ungrouped variables", "definition": "random(4000000 .. 7000000#1000000)", "description": "

Resistance of R1 in MΩ

", "templateType": "randrange", "can_override": false}, "Q2b_R2": {"name": "Q2b_R2", "group": "Ungrouped variables", "definition": "Q2b_R1", "description": "", "templateType": "anything", "can_override": false}, "Q2b_A1": {"name": "Q2b_A1", "group": "Ungrouped variables", "definition": "random(1 .. 2#1)", "description": "

Cross Sectional Area mm2

", "templateType": "randrange", "can_override": false}, "Q2b_l1": {"name": "Q2b_l1", "group": "Ungrouped variables", "definition": "random(10 .. 10#1)", "description": "

length pf gauge mm

", "templateType": "randrange", "can_override": false}, "Q2b_Volume_of_Sample": {"name": "Q2b_Volume_of_Sample", "group": "Ungrouped variables", "definition": "dec(q2b_a1/1000000)*dec(Q2b_l1/1000)\n", "description": "", "templateType": "anything", "can_override": false}, "Q2b_l2": {"name": "Q2b_l2", "group": "Ungrouped variables", "definition": "random(10.1 .. 10.2#0.1)", "description": "

Length of sample after load is applied (mm)

", "templateType": "randrange", "can_override": false}, "Q2b_A2": {"name": "Q2b_A2", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Volume_of_Sample/(Q2b_l2/1000))*1000000),4)\n", "description": "

Cross Sectional Area of Guage when load is applied mm2

", "templateType": "anything", "can_override": false}, "Q2b_RS1": {"name": "Q2b_RS1", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Resistivity*(Q2b_l1/1000))/(Q2b_a1/1000000)),4)\n", "description": "", "templateType": "anything", "can_override": false}, "Q2b_RS2": {"name": "Q2b_RS2", "group": "Ungrouped variables", "definition": "siground(dec((Q2b_Resistivity*(Q2b_l2/1000))/(Q2b_a2/1000000)),4)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["Q2b_Resistivity", "Q2b_VS", "Q2b_R1", "Q2b_R2", "Q2b_R3", "Q2b_A1", "Q2b_l1", "Q2b_Volume_of_Sample", "Q2b_l2", "Q2b_A2", "Q2b_RS1", "Q2b_RS2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part a. Circuit Symbols

\n

For each of the symbols shown in the table, state the name and function of the device: 

\n

\"Circuit

\n

[4 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part b. Wheatstone Bridge Calculation

\n

A Wheatstone Bridge is used to measure the change of resistance before & while a load is applied to a gauge block made of silicon material with resistivity ρ = {Q2b_Resistivity}Ωm.

\n

\"Wheatstone

\n

Circuit Varibles:  VS = {Q2b_VS} V, R1 = {siground({Q2b_R1}/1000000,2)} MΩ,  R2 = {siground({Q2b_R2}/1000000,2)} MΩ, R3 = {siground({Q2b_R3}/1000000,2)} MΩ

\n

\n

The dimensions of the gauge before the load is applied are: Cross Sectional Area, A1  = {Q2b_A1} mm2, length, l1 = {Q2b_l1} mm.   

\n

The dimensions of the gauge when the load is applied are: Cross Sectional Area, A2 = {Q2b_A2} mm2, length, l2 = {Q2b_l2} mm.   

\n\n

SPICE circuit suitable for analysis:  SbE CC1 Q1b (multisim.com)

\n

[6 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part c. Step Response

\n

The circuit shows a Resistor and Capacitor Network as well as the charge/discharge plots of the Capacitor when the switch is closed and opened.

\n

\n

Circuit Varibles: VS = {5} V, VB = {2.5} V tON ={50} ms, tOFF ={200} ms C1 ={10} μF , R1 = {10} kΩ, R2 = {2} kΩ

\n

 

\n

Explain what is happening in the circuit.  What is the relationship between the voltage across and current through the Capacitor.

\n

SPICE circuit suitable for analysis: SbE CC1 Q2c (multisim.com)

\n

[8 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part d. Circuit Analysis

\n

The circuit shown is for a simple ‘No Volt Release’ circuit configuration which is used as a safety feature on electrical equipment:

\n

\"No

\n

Analyse the operation of this circuit for the intended purpose. Ensure that you:

\n\n

SPICE circuit suitable for analysis: EveryCircuit - No Volt Release

\n

[12 Marks]

"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Part b. Wheatstone Bridge Calculation

\n

A Wheatstone Bridge is used to measure the change of resistance before & while a load is applied to a gauge block made of silicon material with resistivity ρ = {Q2b_Resistivity}Ωm.

\n

\"Wheatstone

\n

Circuit Varibles:  VS = {Q2b_VS} V, R1 = {siground({Q2b_R1}/1000000,2)} MΩ,  R2 = {siground({Q2b_R2}/1000000,2)} MΩ, R3 = {siground({Q2b_R3}/1000000,2)} MΩ

\n

\n

The dimensions of the gauge before the load is applied are: Cross Sectional Area, A1  = {Q2b_A1} mm2, length, l1 = {Q2b_l1} mm.   

\n

The dimensions of the gauge when the load is applied are: Cross Sectional Area, A2 = {Q2b_A2} mm2, length, l2 = {Q2b_l2} mm.   

\n\n

SPICE circuit suitable for analysis:  SbE CC1 Q1b (multisim.com)

\n

[6 Marks]

"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}]}], "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}