// Numbas version: finer_feedback_settings {"name": "ElQ3 - Power & Frequency Response - Randomised Variables Only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/SbE_CC1_Q3ai.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3ai.png"], ["question-resources/SbE_CC1_Q3b.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3b.png"], ["question-resources/SbE_CC1_Q3d.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3d.png"], ["question-resources/SbE_CC1_Q3c.png", "/srv/numbas/media/question-resources/SbE_CC1_Q3c.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "ElQ3 - Power & Frequency Response - Randomised Variables Only", "tags": [], "metadata": {"description": "
Question Covering AC power and frquency response
", "licence": "All rights reserved"}, "statement": "see spread sheet
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"Q3ai_f_S": {"name": "Q3ai_f_S", "group": "Q3a", "definition": "random(100 .. 150#10)", "description": "Frequency (fs)
", "templateType": "randrange", "can_override": false}, "Q3ai_V_PP": {"name": "Q3ai_V_PP", "group": "Q3a", "definition": "random(5 .. 9#1)", "description": "VP-P
", "templateType": "randrange", "can_override": false}, "Q3ai_V_DC": {"name": "Q3ai_V_DC", "group": "Q3a", "definition": "random(-0.5 .. 0.5#0.2)", "description": "DC Offset
", "templateType": "randrange", "can_override": false}, "Q3ai_R_L": {"name": "Q3ai_R_L", "group": "Q3a", "definition": "random(50 .. 150#10)", "description": "Load Resistor RL
", "templateType": "randrange", "can_override": false}, "q3aii_f_s": {"name": "q3aii_f_s", "group": "Q3a", "definition": "random(33 .. 99#33)", "description": "Frequency (fs)
", "templateType": "randrange", "can_override": false}, "q3aii_v_pp": {"name": "q3aii_v_pp", "group": "Q3a", "definition": "random(5 .. 5#1)", "description": "VP-P
", "templateType": "randrange", "can_override": false}, "Q3aii_R_L": {"name": "Q3aii_R_L", "group": "Q3a", "definition": "random(2000 .. 2000#1)", "description": "RL
", "templateType": "randrange", "can_override": false}, "Q3aii_t_rise": {"name": "Q3aii_t_rise", "group": "Q3a", "definition": "siground(dec(1/(Q3aii_t_rise_modifier*q3aii_f_s)),4)", "description": "", "templateType": "anything", "can_override": false}, "Q3aii_t_rise_modifier": {"name": "Q3aii_t_rise_modifier", "group": "Q3a", "definition": "random(3 .. 4#1)", "description": "Modifier of t_rise
", "templateType": "randrange", "can_override": false}, "Q3aii_V_DC": {"name": "Q3aii_V_DC", "group": "Q3a", "definition": "random(1 .. 1#1)", "description": "DC Offset
", "templateType": "randrange", "can_override": false}, "Q3b_R1": {"name": "Q3b_R1", "group": "Q3b", "definition": "random(3000 .. 3600#100)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R2": {"name": "Q3b_R2", "group": "Q3b", "definition": "random(2000 .. 2000#1000)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R3": {"name": "Q3b_R3", "group": "Q3b", "definition": "random(1800 .. 2000#500)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_R4": {"name": "Q3b_R4", "group": "Q3b", "definition": "random(10000 .. 20000#2000)", "description": "", "templateType": "randrange", "can_override": false}, "Q3b_VS": {"name": "Q3b_VS", "group": "Q3b", "definition": "random(12 .. 12#1)", "description": "", "templateType": "randrange", "can_override": false}, "Q3c_R_L": {"name": "Q3c_R_L", "group": "Q3d", "definition": "random(1 .. 3#1)", "description": "Load Resistance (kΩ)
", "templateType": "randrange", "can_override": false}, "Q3c_C1": {"name": "Q3c_C1", "group": "Q3d", "definition": "random(1 .. 3#1)", "description": "Smoothing Capacitor (uF)
", "templateType": "randrange", "can_override": false}, "Q3c_V_S": {"name": "Q3c_V_S", "group": "Q3d", "definition": "random(20 .. 23#1)", "description": "Supply Voltage (VS)
", "templateType": "randrange", "can_override": true}, "Q3c_Z_BDV": {"name": "Q3c_Z_BDV", "group": "Q3d", "definition": "siground(dec(q3c_v_s*(3/20)),2)", "description": "Zener Diode Reverse Breakdown Voltage (V)
", "templateType": "anything", "can_override": false}, "Q3d_C1": {"name": "Q3d_C1", "group": "Q4d", "definition": "random(10 .. 12#0.1)", "description": "Capacitance C1
", "templateType": "randrange", "can_override": false}, "Q3d_L1": {"name": "Q3d_L1", "group": "Q4d", "definition": "random(170 .. 190#10)", "description": "Inductance
", "templateType": "randrange", "can_override": false}, "Q3d_R_L": {"name": "Q3d_R_L", "group": "Q4d", "definition": "random(1 .. 5#4)", "description": "", "templateType": "randrange", "can_override": false}, "Q3d_V_S": {"name": "Q3d_V_S", "group": "Q4d", "definition": "random(1 .. 10#9)", "description": "", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": [], "variable_groups": [{"name": "Unnamed group", "variables": []}, {"name": "Q3b", "variables": ["Q3b_R1", "Q3b_R2", "Q3b_R3", "Q3b_R4", "Q3b_VS"]}, {"name": "Q3a", "variables": ["Q3ai_f_S", "Q3ai_R_L", "Q3ai_V_DC", "Q3ai_V_PP", "q3aii_f_s", "Q3aii_R_L", "Q3aii_t_rise", "Q3aii_t_rise_modifier", "Q3aii_V_DC", "q3aii_v_pp"]}, {"name": "Q3d", "variables": ["Q3c_R_L", "Q3c_C1", "Q3c_V_S", "Q3c_Z_BDV"]}, {"name": "Q4d", "variables": ["Q3d_C1", "Q3d_V_S", "Q3d_L1", "Q3d_R_L"]}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part a) Signal Waveforms
\nDraw or derive the voltage and current wave forms for the following:
\nWaveform | \n\n Varibles \n | \n\n Circuit \n | \n
i. Sinusoidal | \n\n RL: {Q3ai_R_L} Ω \nFrequency (fs): {Q3ai_F_S} Hz \nVP-P: {Q3ai_V_PP} V \nDC Offset (VDC): {Q3ai_V_DC} V \n | \n\n\n\n | \n
ii. Triangular | \n\n RL: {Q3aii_R_L/1000} kΩ \nFrequency (fs): {Q3aii_F_S} Hz \nVP-P: {Q3aii_V_PP} V \nDC Offset (VDC): {Q3aii_V_DC} V \ntRise: {Q3aii_t_rise*1000} ms \n | \n\n\n | \n
SPICE Circuit suitable for analysis: SbE CC1 Q3a (multisim.com)
\n\n[4Marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part b) Power Calculation
\nThe figure shows a resistor network connected to a Triangular Waveform source and the equations that can be used to convert between Star and Delta impedance configurations:
\n\nCircuit Varibles: VS(peak) = {Q3b_VS}V, f = {100}Hz trise = {2}ms Hz, R1= {siground(dec(Q3b_R1/1000),2)}kΩ, R2= {siground(dec(Q3b_R2/1000),2)}kΩ, R3= {siground(dec(Q3b_R3/1000),2)}kΩ, R4= {siground(dec(Q3b_R4/1000),2)}kΩ
\nFor the values given, calculate or determine the RMS power dissipated in the whole circuit and resistor R1.
\nSPICE Circuit Suitable for Analysis: *SbE CC1 Q3b (multisim.com)
\n[6Marks]
\n"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part c) Power Supply
\nThe figure shows a circuit designed for Voltage Reduction, Rectification and Regulation of an AC power source.
\n\nCircuit Variables: VS = {Q3c_V_S}VRMS; C1 = {Q3c_C1}mF; R1={1}Ω; RL = {Q3c_R_L}kΩ; T1: Turns on Primary Winding, NP = 20 and Secondary NS = 9; Diodes D1 & D2, Forward Bias Voltage = 860mV; Diode Z1, Reverse Breakdown Voltage = {Q3c_Z_BDV}V.
\nFor the component values given, explain how the circuit operates. Ensure that you:
\nSPICE Circuit Suitable for Analysis: SbE CC1 EL Q3c (multisim.com)
\n[8 Marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part d) Frequency Response
\nThe circuit shown has a capacitor and inductor in parallel which has been designed to be in resonance at a known frequency. The signal is measured across the load (RL).
\n\n\nCircuit Varibles: VS = {Q3d_V_S}V(RMS) , RL = {Q3d_R_L} kΩ C1 = {Q3d_C1}μF L1 = {Q3d_L1} mH
\nUsing calculation or simulation, evaluate the performance of the circuit in a frequency range from 1Hz to 10kHz. Ensure that you:
\nSPICE Circuit Suitable for Analysis: *SbE CC1 Q3d (multisim.com)
\n\n[12 Marks]
"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}]}], "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}