// Numbas version: finer_feedback_settings {"name": "MeQ7 - Friction & Centripetal Motion - Randomised Variables only", "extensions": [], "custom_part_types": [], "resources": [["question-resources/ME_Q7.png", "/srv/numbas/media/question-resources/ME_Q7.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "MeQ7 - Friction & Centripetal Motion - Randomised Variables only", "tags": [], "metadata": {"description": "
Friction & Centripital Motion
", "licence": "All rights reserved"}, "statement": "An ambulance is making a turn along a road with a camber (θ = {MeQ7_Camber_theta}°) having a radius of curvature, r= {MeQ7_turn_radius}m. The mass of the ambulance is {MeQ7_Ambulance_Mass}kg. The coefficient of static friction between the tyres and the road (μ) is {MeQ7_CoFriction}. The angle that the ambulance subtends while making the turn (β) is {MeQ7_Turn_Beta}°.
\n\nThe ambulance is at the maximum safe speed so no slipping occurs.
\n\n", "advice": "see spreadsheet
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true}, "constants": [], "variables": {"MeQ7_Camber_theta": {"name": "MeQ7_Camber_theta", "group": "Ungrouped variables", "definition": "random(4 .. 7#1)", "description": "Road camber (θ)
", "templateType": "randrange", "can_override": false}, "MeQ7_turn_radius": {"name": "MeQ7_turn_radius", "group": "Ungrouped variables", "definition": "random(90 .. 120#10)", "description": "radius of curvature, r, (m)
", "templateType": "randrange", "can_override": false}, "MeQ7_Ambulance_Mass": {"name": "MeQ7_Ambulance_Mass", "group": "Ungrouped variables", "definition": "random(1000 .. 1200#30)", "description": "The mass of the ambulance (kg)
", "templateType": "randrange", "can_override": false}, "MeQ7_CoFriction": {"name": "MeQ7_CoFriction", "group": "Ungrouped variables", "definition": "random(0.1 .. 0.3#0.1)", "description": "The coefficient of static friction between the tyres and the road.
", "templateType": "randrange", "can_override": false}, "MeQ7_Turn_Beta": {"name": "MeQ7_Turn_Beta", "group": "Ungrouped variables", "definition": "random(45 .. 60#5)", "description": "The angle that the ambulance subtends while making the turn
", "templateType": "randrange", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["MeQ7_Camber_theta", "MeQ7_turn_radius", "MeQ7_Ambulance_Mass", "MeQ7_CoFriction", "MeQ7_Turn_Beta"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part a) Use the vertical components of the forces acting on the ambulance to calculate the total normal reaction force (NC)
\n[3marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part b) Resolve the horizontal forces acting on the Ambulance and write an expression that makes the normal reaction force the subject of the equation (i.e NC = ….).
\n[3marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part c) Calculate the maximum safe speed in km/h so no slipping occurs?
\n[3marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part d) How long does it take to complete the turn?
\n[3marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Part e) What kinetic energy will the ambulance have at the end of the turn?
\n[3marks]
"}, {"type": "information", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Ensure you include a free body diagram in your workings.
\n[5 Marks]
"}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}]}], "contributors": [{"name": "Robert Bauld", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/19446/"}]}