// Numbas version: finer_feedback_settings {"name": "Jinhua's copy of Differentiation 5 - Trigonometric Functions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "p"], "name": "Jinhua's copy of Differentiation 5 - Trigonometric Functions", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
If you don't know how to differentiate trigonometric functions, please see 'Differentiation 4 - Trigonometric Functions'.
\n\n
These questions use the chain rule.
\nThe earlier questions are easy to do by inspection, e.g using Part a:
\n$y=sin(\\var{c[0]}x)$.
\nWe differentiate the term(s) inside the function, here the term is $\\var{c[0]}x$.
\nThen we derive $sin$ of any function, giving us $cos$.
\nPutting our results together, we get
\n$\\var{c[0]}cos(\\var{c[0]}x)$.
\n\n\n\nWe will now go through an entire worked example of the formal method of the chain rule using Part e.
\nThe expression we will be differentiating here is
\n$y=tan^\\var{p[0]}(x)$.
\nAs a reminder, the chain rule is defined as
\n$\\frac{dy}{dx}=\\frac{dy}{du}\\times\\frac{du}{dx}$.
\nNow we let $u=tanx$, so then $y=u^\\var{p[0]}$
\nThis becomes an easy differentiation using $\\frac{dy}{du}\\times\\frac{du}{dx}$:
\nDifferentiate $y$ with respect to $u$, giving $\\simplify{{p[0]}u^{{p[0]}-1}}$.
\nThen differentiate $u$ with respect to $x$, giving $sec^2x$.
\nMultiply these results together, and substitue $tan$ back in for $u$.
\nYour final result is therefore
\n$\\simplify{{p[0]}(tan^{{p[0]}-1}(x))*sec^2(x)}$.
", "rulesets": {}, "parts": [{"prompt": "$y=\\sin(\\var{c[0]}x)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": ["x", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{c[0]}cos({c[0]}x)", "marks": "2", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=\\cos(\\var{c[1]}x)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-{c[1]}sin({c[1]}x)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=-\\sin(\\var{c[2]}x^2)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-2{c[2]}x*cos({c[2]}x^2)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=-5\\cos(\\var{c[3]}x)+\\sin(\\var{c[4]}x)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "5{c[3]}sin({c[3]}x)+{c[4]}cos({c[4]}x)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=\\tan^\\var{p[0]}(x)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{p[0]}(tan^({p[0]}-1)(x))*sec^2(x)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "$y=\\cos(x^\\var{p[1]}-1)$
\n$\\frac{dy}{dx}=$ [[0]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"vsetrangepoints": 5, "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "-{p[1]}x^({p[1]}-1)*sin(x^{p[1]}-1)", "marks": "2", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "statement": "Differentiate the following trigonometric functions using the chain rule.
\nDo not write out $dy/dx$; only input the differentiated right hand side of each equation.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"p": {"definition": "repeat(random(3..6),2)", "templateType": "anything", "group": "Ungrouped variables", "name": "p", "description": ""}, "c": {"definition": "shuffle(2..8)[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "coefficients
"}}, "metadata": {"notes": "", "description": "More work on differentiation with trigonometric functions
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}