// Numbas version: finer_feedback_settings {"name": "Jinhua's copy of Differentiation 1 - Basic Polynomial Expressions", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["ac", "bc", "cc", "dc", "ec", "fc", "ap", "bp", "cp", "dp"], "name": "Jinhua's copy of Differentiation 1 - Basic Polynomial Expressions", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
If $y=ax^n$,
\n$\\frac{dy}{dx}=anx^{n-1}$ for all rational $n$.
\nWe'll take one of the terms from Part a as an example:
\n$\\var{cc[0]}x^\\var{cp}$
\nAll we have to do to terms where $x$ is to a power of anything is times the coefficient of $x$ by the original power, and then take one away from the original power.
\nIf you are not familiar with this kind of work, these instructions may sound confusing, but it is much easier once you have seen it in practice.
\nWe take
\n$\\var{cc[0]}x^\\var{cp}$
\nand times $\\var{cc[0]}$ by $\\var{cp}$, to get
\n$(\\var{cc[0]}*\\var{cp})x^\\var{cp}=\\simplify{{cc[0]}*{cp}x^{cp}}$.
\nWe then subtract one from the original power, $\\var{cp}$.
\nThis gives us the final answer of
\n$\\simplify{{cc[0]}*{cp}x^{cp-1}}$.
\n\nRemember, don't be confused if there is no coefficient. The fact the term is there means the coefficient must be $1$, but we don't tend to write it out as, for example $1x$, we just say $x$.
", "rulesets": {}, "parts": [{"prompt": "$\\simplify[basic,zeroterm,zerofactor,unitfactor]{{ac[0]}x^{ap}+{bc[0]}x^{bp}+{cc[0]}x^{cp}+{dc[0]}x^{dp}+{ec[0]}x+{fc[0]}}$
\n[[0]]$x^4+$[[1]]$x^3+$[[2]]$x^2+$[[3]]$x+$[[4]]
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"allowFractions": false, "variableReplacements": [], "maxValue": "{ac[0]}*{ap}", "minValue": "{ac[0]}*{ap}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "0.5", "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{bc[0]}*{bp}", "minValue": "{bc[0]}*{bp}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "0.5", "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{cc[0]}*{cp}", "minValue": "{cc[0]}*{cp}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "0.5", "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{dc[0]}*{dp}", "minValue": "{dc[0]}*{dp}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": "0.5", "type": "numberentry", "showPrecisionHint": false}, {"allowFractions": false, "variableReplacements": [], "maxValue": "{ec[0]}", "minValue": "{ec[0]}", "variableReplacementStrategy": "originalfirst", "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "showPrecisionHint": false}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"vsetrangepoints": 5, "prompt": "$\\simplify[basic,zeroterm,zerofactor,unitfactor]{{ac[1]}x^{ap}+{bc[1]}x^{bp}+{cc[1]}x^{cp}+{dc[1]}x^{dp}+{ec[1]}x+{fc[1]}}$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ac[1]}*{ap}*x^{ap-1}+{bc[1]}*{bp}*x^{bp-1}+{cc[1]}*{cp}*x^{cp-1}+{dc[1]}*{dp}*x^{dp-1}+{ec[1]}", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "$\\simplify[basic,zeroterm,zerofactor,unitfactor]{{ac[2]}x^{ap}+{bc[2]}x^{bp}+{cc[2]}x^{cp}+{dc[2]}x^{dp}+{ec[2]}x+{fc[2]}}$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ac[2]}*{ap}*x^{ap-1}+{bc[2]}*{bp}*x^{bp-1}+{cc[2]}*{cp}*x^{cp-1}+{dc[2]}*{dp}*x^{dp-1}+{ec[2]}", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"vsetrangepoints": 5, "prompt": "$\\simplify[basic,zeroterm,zerofactor,unitfactor]{{ac[3]}x^{ap}+{bc[3]}x^{bp}+{cc[3]}x^{cp}+{dc[3]}x^{dp}+{ec[3]}x+{fc[3]}}$
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "{ac[3]}*{ap}*x^{ap-1}+{bc[3]}*{bp}*x^{bp-1}+{cc[3]}*{cp}*x^{cp-1}+{dc[3]}*{dp}*x^{dp-1}+{ec[3]}", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "statement": "Differentiate the following polynomials.
\nNote: some questions may not include all the possible terms.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"ac": {"definition": "repeat(random(-3..3),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "ac", "description": ""}, "bc": {"definition": "repeat(random(-6..6),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "bc", "description": ""}, "cc": {"definition": "repeat(random(-10..10 except 0 except 1 except -1),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "cc", "description": ""}, "dc": {"definition": "repeat(random(-15..15),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "dc", "description": ""}, "ec": {"definition": "repeat(random(-30..30),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "ec", "description": ""}, "ap": {"definition": "5", "templateType": "anything", "group": "Ungrouped variables", "name": "ap", "description": ""}, "fc": {"definition": "repeat(random(-50..50),4)", "templateType": "anything", "group": "Ungrouped variables", "name": "fc", "description": ""}, "bp": {"definition": "4", "templateType": "anything", "group": "Ungrouped variables", "name": "bp", "description": ""}, "cp": {"definition": "3", "templateType": "anything", "group": "Ungrouped variables", "name": "cp", "description": ""}, "dp": {"definition": "2", "templateType": "anything", "group": "Ungrouped variables", "name": "dp", "description": ""}}, "metadata": {"notes": "", "description": "A basic introduction to differentiation
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}]}], "contributors": [{"name": "", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/514/"}]}