// Numbas version: finer_feedback_settings {"name": "Inverse of a 2x2 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Inverse of a 2x2 matrix", "tags": [], "metadata": {"description": "
Find the determinant and inverse of three $2 \\times 2$ invertible matrices.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Find the inverse of the following matrix:
", "advice": "To find the inverse of a matrix we first need to find the determinant:
\n$$
\\det \\boldsymbol{A} = \\var{a[0][0]} \\times \\var{a[1][1]} - \\var{a[0][1]} \\times \\var{a[1][0]} = \\var{det(a)}
$$
Since $\\det \\boldsymbol{A}\\neq 0$, we know that $\\boldsymbol{A}$ is invertible with:
\n$$
\\begin{aligned}
\\boldsymbol{A}^{-1} &= \\frac{1}{\\det \\boldsymbol{A}} \\begin{pmatrix} d & -b\\\\ -c& a \\end{pmatrix} \\\\
&= \\frac{1}{\\var{det(a)}} \\begin{pmatrix} \\var{a[1][1]} & \\var{-a[0][1]}\\\\ \\var{-a[1][0]}& \\var{a[0][0]} \\end{pmatrix} \\\\
\\end{aligned}
$$
Which gives us our inverse:
\n$$
\\simplify[fractionnumbers]{matrix:A^(-1)={inverse(a)}}
$$
Let:
\n$$
\\boldsymbol{A} = \\var{a}
$$
Calculate $\\boldsymbol{A}^{-1}$
\nInput all the elements of the matrix as fractions or integers and not as decimals.
\n$\\boldsymbol{A}^{-1} = $ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "3", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "inverse(a)", "correctAnswerFractions": true, "numRows": "2", "numColumns": "2", "allowResize": false, "tolerance": "0.01", "markPerCell": false, "allowFractions": true, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Shaheen Charlwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1819/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}]}], "contributors": [{"name": "Christian Lawson-Perfect", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/7/"}, {"name": "Shaheen Charlwood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1819/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}