// Numbas version: finer_feedback_settings {"name": "Determinant of a 2x2 Matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Determinant of a 2x2 Matrix", "tags": [], "metadata": {"description": "
Exercises on calculating the determinant of 2x2 and 3x3 matrices.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Calculate the determinants of the following matrices.
", "advice": "To find the determinant of a $2\\times2$ matrix, we use the following formula
\n$$
\\begin{vmatrix}
a & b \\\\
c & d \\\\
\\end{vmatrix} = ad-bc
$$
Hence, we have:
\na)
\n$$
\\det \\boldsymbol{A} = \\var{maA[0][0]} \\times \\var{maA[1][1]} - \\var{maA[0][1]} \\times \\var{maa[1][0]} = \\var{det(maA)}
$$
b)
\n$$
\\det \\boldsymbol{B} = \\var{maB[0][0]} \\times \\var{maB[1][1]} - \\var{maB[0][1]} \\times \\var{maB[1][0]} = \\var{det(maB)}
$$
Calculate the determinant of the matrix:
\n$$
\\boldsymbol{A} = \\simplify{{maA}}
$$
$\\det \\boldsymbol{A} = $ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "det(maA)", "maxValue": "det(maA)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the determinant of the matrix:
\n$$
\\boldsymbol{B} = \\simplify{{maB}}
$$
$\\det \\boldsymbol{B} = $ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "det(maB)", "maxValue": "det(maB)", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}]}], "contributors": [{"name": "Mark Patterson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/5064/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}