// Numbas version: finer_feedback_settings {"name": "Inverse of a 3x3 matrix", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Inverse of a 3x3 matrix", "tags": [], "metadata": {"description": "
Cofactors Determinant and inverse of a 3x3 matrix.
", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "Follow the steps in the questions to find the inverse of a $3 \\times 3$ matrix
", "advice": "a)
\nFor simplicity, we will use the expansion of the first row to find the determinant
\n$$
\\begin{aligned}
\\det{A} &= a_1A_1 + b_1B_1+ c_1C_1 \\\\
&= \\var{matrixA[0][0]}
\\begin{vmatrix}
\\var{matrixA[1][1]} & \\var{matrixA[1][2]} \\\\
\\var{matrixA[2][1]} & \\var{matrixA[2][2]} \\\\
\\end{vmatrix} - \\var{matrixA[0][1]} \\begin{vmatrix}
\\var{matrixA[1][0]} & \\var{matrixA[1][2]} \\\\
\\var{matrixA[2][0]} & \\var{matrixA[2][2]} \\\\
\\end{vmatrix} + \\var{matrixA[0][2]} \\begin{vmatrix}
\\var{matrixA[1][0]} & \\var{matrixA[1][1]} \\\\
\\var{matrixA[2][0]} & \\var{matrixA[2][1]} \\\\
\\end{vmatrix} \\\\
&= \\var{matrixA[0][0]} \\times \\var{cof11} - \\left(\\var{matrixA[0][1]} \\times \\var{cof12}\\right) + \\var{matrixA[0][2]} \\times \\var{cof13} \\\\
&= \\var{deta}
\\end{aligned}
$$
b)
\nGiven arbitrary matrix
\n$$
A = \\begin{pmatrix}
a & b & c \\\\
d & e & f \\\\
g & h & j \\\\
\\end{pmatrix}
$$
It's cofactors are given by
\n$$
\\begin{aligned}
A_{11} &= +\\begin{vmatrix}
e & f \\\\
h & j \\\\
\\end{vmatrix} \\\\
&= +\\begin{vmatrix}
\\var{a22} & \\var{a23} \\\\
\\var{a32} & \\var{a33} \\\\
\\end{vmatrix} \\\\
&= \\var{cof11}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{12} &= -\\begin{vmatrix}
d & f \\\\
g & j \\\\
\\end{vmatrix} \\\\
&= -\\begin{vmatrix}
\\var{a21} & \\var{a23} \\\\
\\var{a31} & \\var{a33} \\\\
\\end{vmatrix} \\\\
&= \\var{cof12}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{13} &= +\\begin{vmatrix}
d & e \\\\
g & h \\\\
\\end{vmatrix} \\\\
&= +\\begin{vmatrix}
\\var{a21} & \\var{a22} \\\\
\\var{a31} & \\var{a32} \\\\
\\end{vmatrix} \\\\
&= \\var{cof13}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{21} &= -\\begin{vmatrix}
b & c \\\\
h & j \\\\
\\end{vmatrix} \\\\
&= -\\begin{vmatrix}
\\var{a12} & \\var{a13} \\\\
\\var{a32} & \\var{a33} \\\\
\\end{vmatrix} \\\\
&= \\var{cof21}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{22} &= +\\begin{vmatrix}
a & c \\\\
g & j \\\\
\\end{vmatrix} \\\\
&= +\\begin{vmatrix}
\\var{a11} & \\var{a13} \\\\
\\var{a31} & \\var{a33} \\\\
\\end{vmatrix} \\\\
&= \\var{cof22}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{23} &= -\\begin{vmatrix}
a & b \\\\
g & h \\\\
\\end{vmatrix} \\\\
&= -\\begin{vmatrix}
\\var{a11} & \\var{a12} \\\\
\\var{a31} & \\var{a32} \\\\
\\end{vmatrix} \\\\
&= \\var{cof23}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{31} &= +\\begin{vmatrix}
b & c \\\\
e & f \\\\
\\end{vmatrix} \\\\
&= +\\begin{vmatrix}
\\var{a12} & \\var{a13} \\\\
\\var{a22} & \\var{a23} \\\\
\\end{vmatrix} \\\\
&= \\var{cof31}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{32} &= -\\begin{vmatrix}
a & c \\\\
d & f \\\\
\\end{vmatrix} \\\\
&= -\\begin{vmatrix}
\\var{a11} & \\var{a13} \\\\
\\var{a21} & \\var{a23} \\\\
\\end{vmatrix} \\\\
&= \\var{cof32}
\\end{aligned}
$$
$$
\\begin{aligned}
A_{33} &= +\\begin{vmatrix}
a & b \\\\
d & e \\\\
\\end{vmatrix} \\\\
&= +\\begin{vmatrix}
\\var{a11} & \\var{a12} \\\\
\\var{a21} & \\var{a22} \\\\
\\end{vmatrix} \\\\
&= \\var{cof33}
\\end{aligned}
$$
c)
\nUsing our answer from the previous question, we simply write the cofactors in the form
\n$$
\\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\\\
A_{21} & A_{22} & A_{23} \\\\
A_{31} & A_{32} & A_{33} \\\\
\\end{pmatrix}
$$
Giving us our matrix of cofactors
\n$$
\\begin{pmatrix}
\\var{cof11} & \\var{cof12} & \\var{cof13} \\\\
\\var{cof21} & \\var{cof22} & \\var{cof23} \\\\
\\var{cof31} & \\var{cof32} & \\var{cof33} \\\\
\\end{pmatrix}
$$
d)
\nThe transposition process turns rows into columns and columns into rows
\nCarrying out this process on our matrix of cofactors gives us the adjugate
\n$$
\\begin{pmatrix}
\\var{cof11} & \\var{cof21} & \\var{cof31} \\\\
\\var{cof12} & \\var{cof22} & \\var{cof32} \\\\
\\var{cof13} & \\var{cof23} & \\var{cof33} \\\\
\\end{pmatrix}
$$
e)
\nWe can find the inverse of $A$ using our determinant and adjugate, using the formula
\n$$
A^{-1} = \\frac{1}{\\det A}(adj \\; A)
$$
Therefore, we can calculate $A^{-1}$ by
\n$$
\\begin{aligned}
A^{-1} &= \\frac{1}{\\var{deta}} \\begin{pmatrix}
\\var{cof11} & \\var{cof21} & \\var{cof31} \\\\
\\var{cof12} & \\var{cof22} & \\var{cof32} \\\\
\\var{cof13} & \\var{cof23} & \\var{cof33} \\\\
\\end{pmatrix} \\\\
&= \\var{inverseA}
\\end{aligned}
$$
cof23
", "templateType": "anything", "can_override": false}, "a22": {"name": "a22", "group": "Ungrouped variables", "definition": "random(0..5 except(a21*a12/a11))", "description": "", "templateType": "anything", "can_override": false}, "cof32": {"name": "cof32", "group": "cofactors", "definition": "a13*a21-a11*a23", "description": "", "templateType": "anything", "can_override": false}, "a21": {"name": "a21", "group": "Ungrouped variables", "definition": "random(0..10)", "description": "", "templateType": "anything", "can_override": false}, "cof13": {"name": "cof13", "group": "cofactors", "definition": "a21*a32-a31*a22", "description": "", "templateType": "anything", "can_override": false}, "matrixA": {"name": "matrixA", "group": "Ungrouped variables", "definition": "matrix([a11,a12,a13],[a21,a22,a23],[a31,a32,a33])", "description": "", "templateType": "anything", "can_override": false}, "a31": {"name": "a31", "group": "Ungrouped variables", "definition": "random(0..10)", "description": "", "templateType": "anything", "can_override": false}, "cof21": {"name": "cof21", "group": "cofactors", "definition": "a32*a13-a12*a33", "description": "", "templateType": "anything", "can_override": false}, "a13": {"name": "a13", "group": "Ungrouped variables", "definition": "random(-5..10)", "description": "", "templateType": "anything", "can_override": false}, "cof12": {"name": "cof12", "group": "cofactors", "definition": "a23*a31-a21*a33", "description": "", "templateType": "anything", "can_override": false}, "cof33": {"name": "cof33", "group": "cofactors", "definition": "a11*a22-a12*a21", "description": "", "templateType": "anything", "can_override": false}, "cof31": {"name": "cof31", "group": "cofactors", "definition": "a12*a23-a22*a13", "description": "", "templateType": "anything", "can_override": false}, "detA": {"name": "detA", "group": "Ungrouped variables", "definition": "a11*cof11+a12*cof12+a13*cof13", "description": "", "templateType": "anything", "can_override": false}, "a23": {"name": "a23", "group": "Ungrouped variables", "definition": "random(-4..4)", "description": "", "templateType": "anything", "can_override": false}, "a33": {"name": "a33", "group": "Ungrouped variables", "definition": "random(0..20)", "description": "", "templateType": "anything", "can_override": false}, "a11": {"name": "a11", "group": "Ungrouped variables", "definition": "random(-3..3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "deta <> 0", "maxRuns": 100}, "ungrouped_variables": ["matrixA", "a11", "a12", "a21", "a22", "a13", "a23", "a31", "a32", "a33", "inverseA", "detA"], "variable_groups": [{"name": "cofactors", "variables": ["cof11", "cof12", "cof13", "cof21", "cof22", "cof23", "cof31", "cof32", "cof33"]}, {"name": "Unnamed group", "variables": []}], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Let:
\n$$
A=\\var{matrixA}
$$
Find the determinant of $A$
\n$\\det A =$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": true, "customName": "det a", "marks": "1", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "det(matrixA)", "maxValue": "det(matrixA)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Calculate the nine cofactors of $A$
\nThe cofactor $A_{ij}$ denotes the cofactor in row $i$ and column $j$
\n$A _{11}=$ [[0]]
\n$A_{12}=$ [[1]]
\n$A_{13}=$ [[2]]
\n$A_{21}=$ [[3]]
\n$A_{22}=$ [[4]]
\n$A_{23}=$ [[5]]
\n$A_{31}=$ [[6]]
\n$A_{32}=$ [[7]]
\n$A_{33}=$ [[8]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof11}", "maxValue": "{cof11}", "correctAnswerFraction": false, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof12}", "maxValue": "{cof12}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof13}", "maxValue": "{cof13}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof21}", "maxValue": "{cof21}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof22}", "maxValue": "{cof22}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof23}", "maxValue": "{cof23}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof31}", "maxValue": "{cof31}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof32}", "maxValue": "{cof32}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{cof33}", "maxValue": "{cof33}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Using your answer to part $b)$, state the matrix of cofactors
\n[[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": "0.5", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([cof11,cof12,cof12],[cof21,cof22,cof32],[cof31,cof32,cof33])", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Find the transpose of your matrix from part $c)$, giving us the adjugate
\n[[0]]
", "gaps": [{"type": "matrix", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": 0, "markPerCell": false, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": ""}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Using your answers from all the previous parts, find the inverse of $A$
\nElements will be accepted as fractions or correct to 2 decimal places
\n$A^{-1}=$ [[0]]
", "gaps": [{"type": "matrix", "useCustomName": true, "customName": "inv a", "marks": "4", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [{"variable": "cof11", "part": "p1g0", "must_go_first": true}, {"variable": "cof12", "part": "p1g1", "must_go_first": true}, {"variable": "cof13", "part": "p1g2", "must_go_first": true}, {"variable": "cof21", "part": "p1g3", "must_go_first": true}, {"variable": "cof22", "part": "p1g4", "must_go_first": true}, {"variable": "cof23", "part": "p1g5", "must_go_first": true}, {"variable": "cof31", "part": "p1g6", "must_go_first": true}, {"variable": "cof32", "part": "p1g7", "must_go_first": true}, {"variable": "cof33", "part": "p1g8", "must_go_first": true}, {"variable": "detA", "part": "p0g0", "must_go_first": true}], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "correctAnswer": "matrix([cof11,cof21,cof31],[cof12,cof22,cof32],[cof13,cof23,cof33])/det(matrixA)", "correctAnswerFractions": false, "numRows": "3", "numColumns": "3", "allowResize": false, "tolerance": "0.005", "markPerCell": true, "allowFractions": false, "minColumns": 1, "maxColumns": 0, "minRows": 1, "maxRows": 0, "prefilledCells": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": true}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}]}], "contributors": [{"name": "Clodagh Carroll", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/384/"}, {"name": "Violeta CIT", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1030/"}, {"name": "Marie Nicholson", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/1799/"}, {"name": "Timur Zaripov", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3272/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}