// Numbas version: finer_feedback_settings {"name": "3x3 Determinant Problems", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "3x3 Determinant Problems", "tags": [], "metadata": {"description": "
This question tests learner's knowledge of the inverse matrix method for a 3x3 matrix.
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "Calculate the two values for $x$ that satisfy the equation $|A|=\\var{k}$
\nwhere the matrix $A$ is given by:
\n$$
A=\\begin{pmatrix} x&\\var{a}&\\var{b}\\\\ \\var{c}&x&\\var{d}\\\\\\var{e1}&\\var{f}&\\var{g} \\end{pmatrix}
$$
We must calculate the determinant as usual, using the expansion of the first row:
\n$$
\\begin{aligned}
\\det{A} &= x\\begin{vmatrix}
x &\\var{d} \\\\
\\var{f} & \\var{g} \\\\
\\end{vmatrix} -\\var{a} \\begin{vmatrix}
\\var{c} & \\var{d} \\\\
\\var{e1} & \\var{g} \\\\
\\end{vmatrix} + \\var{b} \\begin{vmatrix}
\\var{c} & x \\\\
\\var{e1} & \\var{f}
\\end{vmatrix} \\\\
&= x(x-\\simplify{{d}{f}})-\\var{a}(\\simplify{{c}*{g}}-\\simplify{{e1}*{d}})+\\var{b}(\\simplify{{c}*{f}}-\\var{e1}x) \\\\
&= x^2-\\simplify{{d}*{f}}x-\\simplify{{a}*{c}*{g}}+\\simplify{{a}*{e1}*{d}}+\\simplify{{b}*{c}*{f}}-\\simplify{{b}*{e1}}x \\\\
&= x^2-\\simplify{{d}*{f}+{b}*{e1}}x+\\simplify{{a}*{e1}*{d}+{b}*{c}*{f}-{a}*{c}*{g}}
\\end{aligned}
$$
Since we know that $\\det A = \\var{k}$:
\n$$
\\begin{aligned}
x^2-\\simplify{{d}*{f}+{b}*{e1}}x+\\simplify{{a}*{e1}*{d}+{b}*{c}*{f}-{a}*{c}*{g}} &= \\var{k} \\\\
x^2-\\simplify{{d}*{f}+{b}*{e1}}x+\\simplify{{b}*{e1}*{f}*{d}} &= 0
\\end{aligned}
$$
This can be solved by formula or by finding factors:
\n$$
(x-\\simplify{{f}*{d}})(x-\\simplify{{b}*{e1}})=0
$$
So we have:
\n$$
x=\\simplify{{f}*{d}}\\,\\,\\,\\,\\,or\\,\\,\\,\\,\\,x=\\simplify{{b}*{e1}}
$$
Enter the smaller of the two values
\n\\(x=\\) [[0]]
\nEnter the larger of the two values
\n\\(x=\\) [[1]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{f}*{d}", "maxValue": "{f}*{d}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": 0, "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": "2", "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "{b}*{e1}", "maxValue": "{b}*{e1}", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}]}], "contributors": [{"name": "Frank Doheny", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/789/"}, {"name": "Xiaodan Leng", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2146/"}, {"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}