// Numbas version: finer_feedback_settings {"name": "Conformable for Multiplication", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Conformable for Multiplication", "tags": [], "metadata": {"description": "
This question tests if a students understands when matrices are conformable
", "licence": "Creative Commons Attribution-NonCommercial 4.0 International"}, "statement": "For each of the following pairs of matrices, determine whether they are conformable for multiplication
", "advice": "We are asked to determine whether two matrices are conformable for multiplication
\nTo do this, we must determine the dimensions of each matrix
\na)
\n$\\boldsymbol{A}$ has $\\var{n1q1}$ columns and $\\boldsymbol{B}$ has $\\var{m2q1}$ rows
\nSince both of these values are $\\var{n1q1}$, the product $\\boldsymbol{AB}$ is defined and the matrices are conformable
\nSince $\\var{n1q1}$ is not equal to $\\var{m2q1}$, the product $\\boldsymbol{AB}$ is not defined and the matrices are not conformable
\nb)
\n$\\boldsymbol{C}$ has $\\var{n1q2}$ columns and $\\boldsymbol{D}$ has $\\var{m2q2}$ rows
\nSince both of these values are $\\var{n1q2}$, the product $\\boldsymbol{CD}$ is defined and the matrices are conformable
\nSince $\\var{n1q2}$ is not equal to $\\var{m2q2}$, the product $\\boldsymbol{CD}$ is not defined and the matrices are not conformable
\nc)
\n$\\boldsymbol{E}$ has $\\var{n1q3}$ columns and $\\boldsymbol{F}$ has $\\var{m2q3}$ rows
\nSince both of these values are $\\var{n1q3}$, the product $\\boldsymbol{EF}$ is defined and the matrices are conformable
\nSince $\\var{n1q3}$ is not equal to $\\var{m2q3}$, the product $\\boldsymbol{AB}$ is not defined and the matrices are not conformable
\nConsider:
\n$$
\\boldsymbol{A} = \\var{A}, \\boldsymbol{B} = \\var{B}
$$
The product $\\boldsymbol{AB}$ [[0]], and therefore the matrices are [[1]].
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['exists','does not exist']", "matrix": "[if(conf1,1,0),if(conf1,0,1)]"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['conformable for multiplication','not conformable for multiplication']", "matrix": "[if(conf1,1,0),if(conf1,0,1)]"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider:
\n$$
\\boldsymbol{C} = \\var{C}, \\boldsymbol{D} = \\var{D}
$$
The product $\\boldsymbol{CD}$ [[0]], and therefore the matrices are [[1]].
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['exists','does not exist']", "matrix": "[if(conf2,1,0),if(conf2,0,1)]"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['conformable for multiplication','not conformable for multiplication']", "matrix": "[if(conf2,1,0),if(conf2,0,1)]"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Consider:
\n$$
\\boldsymbol{E} = \\var{E}, \\boldsymbol{F} = \\var{F}
$$
The product $\\boldsymbol{EF}$ [[0]], and therefore the matrices are [[1]].
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['exists','does not exist']", "matrix": "[if(conf3,1,0),if(conf3,0,1)]"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "dropdownlist", "displayColumns": 0, "showCellAnswerState": true, "choices": "['conformable for multiplication','not conformable for multiplication']", "matrix": "[if(conf3,1,0),if(conf3,0,1)]"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "type": "question", "contributors": [{"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}]}], "contributors": [{"name": "Tamsin Smith", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/14108/"}, {"name": "Fraser Buxton", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/24224/"}]}