// Numbas version: finer_feedback_settings {"name": "Torris's copy of Algebra III: factorisation", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["c", "c2", "c3", "squares", "firstsquare", "secondsquare", "q1", "q2", "q3", "q4", "qa", "qb", "qc"], "name": "Torris's copy of Algebra III: factorisation", "tags": [], "preamble": {"css": "", "js": ""}, "advice": "
Follow the steps outlined above to help you factorise the questions.
\nClick on 'Try another question like this' to try other questions using different numbers.
\nAlternatively, click on this link to watch a video on factorising expressions.
", "rulesets": {}, "parts": [{"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c[0]}-\\var{c[1]}x^2=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $2$. Vi setter den så utenfor parentes: $2(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$2\\big(\\frac{\\var{c[0]}}{2}-\\frac{\\var{c[1]}}{2}x^2\\big)=2\\big(\\simplify{{c[0]}/2}-\\simplify{{c[1]}/2}x^2\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2({c[0]}/2-({c[1]}/2)x^2)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c[2]}ab+\\var{c[3]}bc=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $2b$. Vi setter den så utenfor parentes: $2b(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$2b\\big(\\frac{\\var{c[2]}ab}{2b}+\\frac{\\var{c[3]}bc}{2b}\\big)=2b\\big(\\simplify{({c[2]}/2)*a}+\\simplify{({c[3]}/2)*c}\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2b*(({c[2]}a/2)+({c[3]}c/2))", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c[4]}a^2+\\var{c[5]}ab=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $2a$. Vi setter den så utenfor parentes: $2a(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$2a\\big(\\frac{\\var{c[4]}a^2}{2a}+\\frac{\\var{c[5]}ab}{2a}\\big)=2a\\big(\\simplify{({c[4]}/2)*a}+\\simplify{({c[5]}/2)*b}\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2a*({c[4]}a/2+{c[5]}b/2)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$pq^3-p^3q=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $pq$. Vi setter den så utenfor parentes: $pq(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$pq\\big(\\frac{pq^3}{pq}-\\frac{p^3q}{pq}\\big)=pq(q^2-p^2)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "p*q*((q^2)-p^2)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c2[0]}x^2y+\\var{c2[1]}xy^4=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $3xy$. Vi setter den så utenfor parentes: $3xy(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$3xy\\big(\\frac{\\var{c2[0]}x^2y}{3xy}+\\frac{\\var{c2[1]}xy^4}{3xy}\\big)=3xy\\big(\\simplify{({c2[0]}/3)*x}+\\simplify{({{c2}[1]}/3)*y^3}\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*x*y*(({c2[0]}x/3)+({c2[1]}y^3/3))", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c3[0]}p^3q-\\var{c3[1]}p^2q^2+\\var{c3[2]}pq^3=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $2pq$. Vi setter den så utenfor parentes: $2pq(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$2pq\\big(\\frac{\\var{c3[0]}p^3q}{2pq}-\\frac{\\var{c3[1]}p^2q^2}{2pq}+\\frac{\\var{c3[2]}pq^3}{2pq}\\big)=2pq\\big(\\simplify{({c3[0]}/2)p^2}-\\simplify{({c3[1]}/2)*p q}+\\simplify{({c3[2]}/2)*q^2}\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "2*p*q*({c3[0]}p^2/2-{c3[1]}*p*q/2+{c3[2]}q^2/2)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{c2[2]}lm^2-\\var{c2[3]}l^3m^3+\\var{c2[4]}l^2m^4=$
", "expectedvariablenames": ["x", "a", "b", "c", "p", "q", "l", "m", "y"], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Først finner vi største felles faktor, i dette tilfelle $3lm^2$. Vi setter den så utenfor parentes: $3lm^2(\\;\\;\\;\\;)$
\nDeretter må vi finne ut hva som står igjen i leddene inne i parentesen.
\nFor å finne dette kan vi dele hvert ledd med den felles faktoren:
\n$3lm^2\\big(\\frac{{c2[2]}lm^2}{3lm^2}-\\frac{{c2[3]}l^3m^3}{3lm^2}+\\frac{{c2[4]}l^2m^4}{3lm^2}\\big)=3lm^2\\big(\\simplify{({c2[2]}/3)}-\\simplify{({c2[3]}/3)*l^2m}+\\simplify{({c2[4]}/3)*lm^2}\\big)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "all", "scripts": {}, "answer": "3*l*m^2*({c2[2]}/3-{c2[3]}*l^2*m/3+{c2[4]}l*m^2/3)", "marks": "3", "checkvariablenames": true, "checkingtype": "absdiff", "type": "jme", "musthave": {"message": "Your answer must be factorised
", "showStrings": false, "strings": ["(", ")"], "partialCredit": 0}}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\var{firstsquare}-\\var{secondsquare}x^2$ =
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "Dette kjenner vi som 3.kvadratsetning, eller konjugatsetningen:
\n$a^2-b^2=(a+b)(a-b)$
\nVi kan multiplisere parentesene på høyre side for å vise at det stemmer::
\n$(a+b)(a-b)=a^2-ab+ab-b^2=a^2-b^2$
\n$ \"a\" $ og $ \"b\" $ kan være byttet ut med mer sammensatte uttrykk, husk da at hver faktor i leddene skal opphøyes i andre:
\n$a^2x^4-b^2y^6=(ax^2+by^3)(ax^2-by^3)$
\nLeddene kan også være kombinasjoner av tall og bokstaver:
\n$9x^2-16y^4=(3x+4y^2)(3x-4y^2)$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "!basic", "scripts": {}, "answer": "({{squares}[0]}+{{squares}[1]}*x)({{squares}[0]}-{{squares}[1]}*x)", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}, {"stepsPenalty": "2", "vsetrangepoints": 5, "prompt": "$\\simplify{{qa}*x^2+{qb}*x+{qc}}$ =
", "expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0, 1], "showpreview": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "steps": [{"prompt": "When doing the opposite of factorisation, i.e. expanding brackets, it is sometimes possible to reveal a quadratic expression such as the one in this question from the product of two binomials where the highest power of the variable is $1$. It follows, therefore, that some quadratic expressions can be factorised into the product of two binomials. When this is possible, we say that the quadratic expression can be 'factorised with integers'.
\nFor example, $-6x^2+x+2=(2x+1)(-3x+2)$
\nIn more general terms, the quadratic expression can be shown as:
\n$ax^2+bx+c$ and the product of binomials could be $(dx+e)(fx+g)$
\nWhen expanding the brackets of the binomial products, the quadratic is formed as:
\n$(d\\times f)x^2+((d\\times g)+(e\\times f))x+(e\\times g)$
\nFactorising the quadratic with integers, therefore, requires the insight of reverse engineering the products of the coefficients to reflect the pattern shown above.
\nIn this question, the coefficients of the quadratic expression can be analysed as follows:
\n$a=(d\\times f)=\\var{qa},\\;\\;\\;b=((d\\times g)+(e\\times f))=\\var{qb},\\;\\;\\;c=(e\\times g)=\\var{qc}$
\nLook for all possible factors of these coefficients and try different variations until you find those which satisfy all conditions.
\nThe result should be:
\n$d=\\var{q1},\\;\\;\\;e=\\var{q2}\\;\\;\\;f=\\var{q3}\\;\\;\\;g=\\var{q4}$
\nSo that,
\n$(\\var{q1}\\times\\var{q3})x^2+((\\var{q1}\\times\\var{q4})+(\\var{q2}\\times\\var{q3}))x+(\\var{q2}\\times\\var{q4})$
\n$\\therefore,\\;\\;\\;\\simplify{{qa}*x^2+{qb}*x+{qc}}=(\\simplify{{q1}x+{q2}})(\\simplify{{q3}*x+{q4}})$
", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "information"}], "showCorrectAnswer": true, "answersimplification": "!basic", "scripts": {}, "answer": "({q1}x+{q2})({q3}x+{q4})", "marks": "3", "checkvariablenames": false, "checkingtype": "absdiff", "type": "jme"}], "extensions": [], "statement": "Faktoriser følgende uttrykk:
\nMerk: Bruk stjerne (*) til multiplikasjon og hatt (^) for å opphøye i en potens. For eksempel, $xy$ skrives som $x$*$y$, $a(b+c)$ skrives som $a$*$(b+c)$ og $x^2$ som $x$^2.
\nUnder \"Vis trinn\" finnes fullstendig løsning til oppgavene.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "variables": {"q1": {"definition": "random(2..9)", "templateType": "anything", "group": "Ungrouped variables", "name": "q1", "description": ""}, "c": {"definition": "shuffle([2,2,6,8,10,14])", "templateType": "anything", "group": "Ungrouped variables", "name": "c", "description": "Coefficients in a,b,c (HCF: 2)
"}, "q2": {"definition": "random(-9..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "q2", "description": ""}, "firstsquare": {"definition": "squares[0]^2", "templateType": "anything", "group": "Ungrouped variables", "name": "firstsquare", "description": ""}, "q4": {"definition": "random(-9..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "q4", "description": ""}, "q3": {"definition": "random(-9..9 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "q3", "description": ""}, "qa": {"definition": "q1*q3", "templateType": "anything", "group": "Ungrouped variables", "name": "qa", "description": ""}, "qc": {"definition": "q2*q4", "templateType": "anything", "group": "Ungrouped variables", "name": "qc", "description": ""}, "qb": {"definition": "(q3*q2)+(q1*q4)", "templateType": "anything", "group": "Ungrouped variables", "name": "qb", "description": ""}, "secondsquare": {"definition": "squares[1]^2", "templateType": "anything", "group": "Ungrouped variables", "name": "secondsquare", "description": ""}, "c3": {"definition": "shuffle([2,4,6,10,14])[0..3]", "templateType": "anything", "group": "Ungrouped variables", "name": "c3", "description": "Part f (HCF:2)
"}, "c2": {"definition": "shuffle([3,3,6,9,15])[0..5]", "templateType": "anything", "group": "Ungrouped variables", "name": "c2", "description": "Coefficients in e,f (HCF: 3)
"}, "squares": {"definition": "shuffle(2..7)[0..2]", "templateType": "anything", "group": "Ungrouped variables", "name": "squares", "description": ""}}, "metadata": {"description": "Factorising polynomials using the highest common factor.
\nAdapted from 'Factorisation' by Steve Kilgallon.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}]}]}], "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}]}