// Numbas version: finer_feedback_settings {"name": "Oracle function estimation", "extensions": ["geogebra"], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["a", "b", "defs", "c", "d", "x_0", "df", "ddf"], "name": "Oracle function estimation", "tags": [], "advice": "", "rulesets": {}, "parts": [{"prompt": "

Estimate $f'\\!(\\var{x_0})$ to one decimal place: [[0]]

\n

Estimate $f''\\!(\\var{x_0})$ to one decimal place: [[1]]

\n

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "1", "maxValue": "df+0.5", "minValue": "df-0.5", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "type": "numberentry", "correctAnswerStyle": "plain"}, {"precisionType": "dp", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "1", "maxValue": "ddf+0.5", "minValue": "ddf-0.5", "variableReplacementStrategy": "originalfirst", "strictPrecision": true, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "notationStyles": ["plain", "en", "si-en"], "showPrecisionHint": false, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}, {"prompt": "

Suppose I reveal that the function is a cubic, so that $f(x) = a x^3 + b x^2 + c x + d$. I will also tell you that $\\{a,b,c,d\\} \\subset \\mathbb{Z}$. Calculate the parameters $a$ to $d$.

\n

$a = $ [[0]]

\n

$b = $ [[1]]

\n

$c = $ [[2]]

\n

$d = $ [[3]]

", "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "gaps": [{"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "a", "minValue": "a", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "b", "minValue": "b", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "c", "minValue": "c", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}, {"integerPartialCredit": 0, "integerAnswer": true, "allowFractions": false, "variableReplacements": [], "maxValue": "d", "minValue": "d", "variableReplacementStrategy": "originalfirst", "notationStyles": ["plain", "en", "si-en"], "correctAnswerFraction": false, "showCorrectAnswer": true, "scripts": {}, "marks": 1, "type": "numberentry", "correctAnswerStyle": "plain"}], "showCorrectAnswer": true, "scripts": {}, "marks": 0, "type": "gapfill"}], "extensions": ["geogebra"], "statement": "

I am thinking of a function, but I will not tell you what it is! But:

\n
    \n
  1. It is at least twice-differentiable.
  2. \n
  3. I will tell you the value of the function anywhere you ask, to three decimal places. You can use the box below to inquire of me. (You may need to wait a little for it to load.)
  4. \n
\n

{geogebra_applet('ufgKrAzb',defs)}

", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"a": {"definition": "random(-3..3 except 0)", "templateType": "anything", "group": "Ungrouped variables", "name": "a", "description": ""}, "defs": {"definition": "[\n ['a',a],\n ['b',b],\n ['c',c],\n ['d',d]\n]", "templateType": "anything", "group": "Ungrouped variables", "name": "defs", "description": ""}, "c": {"definition": "random(-3..3#1)", "templateType": "randrange", "group": "Ungrouped variables", "name": "c", "description": ""}, "b": {"definition": "random(-3..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "b", "description": ""}, "d": {"definition": "random(-3..3)", "templateType": "anything", "group": "Ungrouped variables", "name": "d", "description": ""}, "df": {"definition": "3*a*x_0^2+2*b*x_0+c", "templateType": "anything", "group": "Ungrouped variables", "name": "df", "description": ""}, "x_0": {"definition": "random(-50 .. 50 except 0)/10", "templateType": "anything", "group": "Ungrouped variables", "name": "x_0", "description": ""}, "ddf": {"definition": "6*a*x_0+2*b", "templateType": "anything", "group": "Ungrouped variables", "name": "ddf", "description": ""}}, "metadata": {"description": "

Given an oracle function that will output its value given an input: first estimate the derivative, and second calculate its shape.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "type": "question", "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}]}]}], "contributors": [{"name": "Philip Walker", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/362/"}]}