// Numbas version: finer_feedback_settings {"name": "John's copy of Pushing a box up an inclined plane", "extensions": [], "custom_part_types": [], "resources": [["question-resources/force_acting_on_incline.png", "/srv/numbas/media/question-resources/force_acting_on_incline.png"], ["question-resources/force_acting_on_an_incline_solution.png", "/srv/numbas/media/question-resources/force_acting_on_an_incline_solution.png"]], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "ungrouped_variables": ["mass", "P", "theta", "R"], "name": "John's copy of Pushing a box up an inclined plane", "tags": [], "advice": "
We can draw a diagram to show the forces acting on the box. The plane is smooth so there is no friction.
\nTo find the normal reaction between the box and the plane we solve $F=ma$ perpendicular to the plane.
\n\\begin{align}
F & = ma, \\\\
R - mg \\cos \\theta - P \\cos(90^{\\circ} - \\theta) & = m \\times 0, \\\\
R & = mg \\cos \\theta - P \\cos(90^{\\circ} - \\theta), \\\\
& = (\\var{mass} \\times 9.8 \\cos(\\var{theta}^{\\circ})) - (\\var{P} \\cos(\\var{90-theta}^{\\circ})), \\\\
& = \\var{R}\\mathrm{N}.
\\end{align}
The normal reaction, $R$, is $\\var{R}\\mathrm{N}$ to 3d.p.
\nTo find the acceleration of the box up the plane we resolve parallel to the plane. The plane is smooth so there is no friction.
\n\\begin{align}
F& = ma,\\\\
P \\cos \\theta - mg \\cos (90^{\\circ} - \\theta) & = ma, \\\\
a & = \\frac{ P \\cos \\theta - mg \\cos (90^{\\circ} - \\theta)}{m}, \\\\
&= \\frac{ \\var{P} \\cos(\\var{theta}^{\\circ}) - (\\var{mass} \\times 9.8 \\cos(\\var{90-theta}^{\\circ}))}{\\var{mass}}, \\\\
&= \\var{precround((P*cos(radians(theta))-mass*9.8*cos(radians(90-theta)))/mass,3)}\\mathrm{ms^{-2}}.
\\end{align}
The acceleration of the box up the plane is $\\var{precround((P*cos(radians(theta))-mass*9.8*cos(radians(90-theta)))/mass,3)}\\mathrm{ms^{-2}}.$
", "rulesets": {}, "parts": [{"precisionType": "dp", "prompt": "Find the normal reaction between the box and the plane, in $\\mathrm{N}$ to 3 decimal places.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "mass*9.8*cos(radians(theta))+P*cos(radians(90-theta))", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "mass*9.8*cos(radians(theta))+P*cos(radians(90-theta))", "type": "numberentry", "showPrecisionHint": false}, {"precisionType": "dp", "prompt": "Assuming the plane is smooth, find the acceleration of the box up the plane, in $\\mathrm{ms^{-2}}$ to 3 decimal places.
", "precisionMessage": "You have not given your answer to the correct precision.", "allowFractions": false, "variableReplacements": [], "precision": "3", "maxValue": "(P*cos(radians(theta))-mass*9.8*cos(radians(90-theta)))/mass", "variableReplacementStrategy": "originalfirst", "strictPrecision": false, "correctAnswerFraction": false, "showCorrectAnswer": true, "precisionPartialCredit": 0, "scripts": {}, "marks": 1, "minValue": "(P*cos(radians(theta))-mass*9.8*cos(radians(90-theta)))/mass", "type": "numberentry", "showPrecisionHint": false}], "extensions": [], "statement": "A box of mass $\\var{mass}\\mathrm{kg}$ is being pushed up an inclined plane by a horizontal force $P = \\var{P}\\mathrm{N}$. The plane is inclined at an angle of $\\theta=\\var{theta}^{\\circ}$. above the horizontal.
\nIn the following the acceleration due to gravity is taken as $g=9.8\\mathrm{ms^{-2}}$.
", "variable_groups": [], "variablesTest": {"maxRuns": 100, "condition": ""}, "preamble": {"css": "", "js": ""}, "variables": {"P": {"definition": "random(15..50#2.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "P", "description": ""}, "R": {"definition": "precround(mass*9.8*cos(radians(theta))+P*cos(radians(90-theta)),3)", "templateType": "anything", "group": "Ungrouped variables", "name": "R", "description": ""}, "mass": {"definition": "random(0.25..7#0.25)", "templateType": "randrange", "group": "Ungrouped variables", "name": "mass", "description": ""}, "theta": {"definition": "random(10..80#0.5)", "templateType": "randrange", "group": "Ungrouped variables", "name": "theta", "description": ""}}, "metadata": {"description": "A box is being pushed up a slope by a horizontal force. Calculate the normal reaction force, and the acceleration of the box up the slope.
", "licence": "Creative Commons Attribution 4.0 International"}, "type": "question", "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "John Bridges", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/913/"}]}]}], "contributors": [{"name": "John Bridges", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/913/"}]}