// Numbas version: finer_feedback_settings {"name": "Ugur's copy of Determine if vectors form a spanning set", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Ugur's copy of Determine if vectors form a spanning set", "tags": ["basis", "checked2015", "euclidean space", "linear algebra", "linear combination", "linear dependence", "linear independence", "linear spaces", "span", "spanning set", "vector spaces"], "metadata": {"description": "

Given $5$ vectors in $\\mathbb{R^4}$ determine if a spanning set for $\\mathbb{R^4}$ or not by looking for any simple dependencies between the vectors.

", "licence": "Creative Commons Attribution 4.0 International"}, "statement": "

Consider the following $5$ vectors in $\\mathbb{R^4}$ .

\n

\\[\\begin{align} \\textbf{v}_1&=\\var{rowvector(v1)}\\\\ \\textbf{v}_2&=\\var{rowvector(v2)}\\\\ \\textbf{v}_3&=\\var{rowvector(v3)}\\\\ \\textbf{v}_4&=\\var{rowvector(v4)}\\\\ \\textbf{v}_5&=\\var{rowvector(v5)}\\end{align}\\]

\n

 

", "advice": "

1. Not linearly independent as any set of more than $4$ vectors in $\\mathbb{R^4}$ is linearly dependent.

\n

2. They are spanning if any vector in $\\mathbb{R^4}$ can be written as a linear combination of these vectors. This means that there must be $4$ linearly independent vectors in the list. If there are not then it is not spanning.

\n

3. This set {contains} a linearly independent subset of $4$ vectors as it is {nt} spanning.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"contains": {"name": "contains", "group": "Ungrouped variables", "definition": "if(mm[0]=1, \"contains\", \"does not contain\")", "description": "", "templateType": "anything", "can_override": false}, "mm": {"name": "mm", "group": "Ungrouped variables", "definition": "switch(u=3 or u=6 or u=7 or u=8 or u=9,[1,0],[0,1])", "description": "", "templateType": "anything", "can_override": false}, "t0": {"name": "t0", "group": "Ungrouped variables", "definition": "if(u<4,2,if(u<7,3,if(u<9,4,5)))", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "f1": {"name": "f1", "group": "Ungrouped variables", "definition": "if(u<9,al,0)", "description": "", "templateType": "anything", "can_override": false}, "z": {"name": "z", "group": "Ungrouped variables", "definition": "[-b-c,a+c,-a+b-c,a-b]", "description": "", "templateType": "anything", "can_override": false}, "q": {"name": "q", "group": "Ungrouped variables", "definition": "list(al*vector(x)+be*vector(y))", "description": "", "templateType": "anything", "can_override": false}, "nt": {"name": "nt", "group": "Ungrouped variables", "definition": "if(mm[0]=1, \" \", \"not\")", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "if(c5+a+b=0, if(c5+1=0,c5+2,c5+1),c5)", "description": "", "templateType": "anything", "can_override": false}, "y": {"name": "y", "group": "Ungrouped variables", "definition": "[b-c,a-b+c,-a-c,a+b]", "description": "", "templateType": "anything", "can_override": false}, "ep": {"name": "ep", "group": "Ungrouped variables", "definition": "if(al=0 and be=0,random(1,-1),if(al=0 and ga=0,random(1,-1), if(be=0 and ga=0,random(1,-1),0)))", "description": "", "templateType": "anything", "can_override": false}, "be": {"name": "be", "group": "Ungrouped variables", "definition": "random(0,1,-1)", "description": "", "templateType": "anything", "can_override": false}, "ga1": {"name": "ga1", "group": "Ungrouped variables", "definition": "if(al1*be1=0,random(1,-1),0)", "description": "", "templateType": "anything", "can_override": false}, "v": {"name": "v", "group": "Ungrouped variables", "definition": "[-b+c,a-c,-a+b,a-b+c] ", "description": "", "templateType": "anything", "can_override": false}, "v2": {"name": "v2", "group": "Ungrouped variables", "definition": "if(u>3,y,p1)", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "[-a+b-c,-b+c,a-c,-a+b]", "description": "", "templateType": "anything", "can_override": false}, "v1": {"name": "v1", "group": "Ungrouped variables", "definition": "x", "description": "", "templateType": "anything", "can_override": false}, "f2": {"name": "f2", "group": "Ungrouped variables", "definition": "if(u<4,0,be)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "f3": {"name": "f3", "group": "Ungrouped variables", "definition": "if(u<7,0,ga)", "description": "", "templateType": "anything", "can_override": false}, "es": {"name": "es", "group": "Ungrouped variables", "definition": "if(mm[0]=1,'','s')", "description": "", "templateType": "anything", "can_override": false}, "thismany": {"name": "thismany", "group": "Ungrouped variables", "definition": "if(mm[0]=1,1,2)", "description": "", "templateType": "anything", "can_override": false}, "p2": {"name": "p2", "group": "Ungrouped variables", "definition": "if(u=1 or u=4,list(al1*vector(x)+be1*vector(y)),\n if(u=2 or u=5 or u=7,list(al1*vector(x)+be1*vector(y)+ga1*vector(z)),\n list(al1*vector(x))))", "description": "", "templateType": "anything", "can_override": false}, "c5": {"name": "c5", "group": "Ungrouped variables", "definition": "random(-3..3 except 0)", "description": "", "templateType": "anything", "can_override": false}, "are": {"name": "are", "group": "Ungrouped variables", "definition": "if(mm[0]=1,\"is only\", \"are\")", "description": "", "templateType": "anything", "can_override": false}, "al": {"name": "al", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "eg": {"name": "eg", "group": "Ungrouped variables", "definition": "if(mm[0]=1,'','This is one of the relations.')", "description": "", "templateType": "anything", "can_override": false}, "be1": {"name": "be1", "group": "Ungrouped variables", "definition": "random(0,1,-1)", "description": "", "templateType": "anything", "can_override": false}, "v4": {"name": "v4", "group": "Ungrouped variables", "definition": "if(u=7 or u=8,p1,if(u=9,v,if(u=4 or u=1,p2,z)))", "description": "", "templateType": "anything", "can_override": false}, "r": {"name": "r", "group": "Ungrouped variables", "definition": "list(al*vector(x)+be*vector(y)+ga*vector(z))", "description": "", "templateType": "anything", "can_override": false}, "ga": {"name": "ga", "group": "Ungrouped variables", "definition": "if(al*be=0, random(1,-1),0)", "description": "", "templateType": "anything", "can_override": false}, "v5": {"name": "v5", "group": "Ungrouped variables", "definition": "if(u=1 or u=4,z,if(u =2 or u=5 or u=7,p2, if(u=9,p1,v)))", "description": "", "templateType": "anything", "can_override": false}, "f4": {"name": "f4", "group": "Ungrouped variables", "definition": "if(u<9,0,ep)", "description": "", "templateType": "anything", "can_override": false}, "al1": {"name": "al1", "group": "Ungrouped variables", "definition": "random(1,-1)", "description": "", "templateType": "anything", "can_override": false}, "u": {"name": "u", "group": "Ungrouped variables", "definition": "random(1..9 except [7,9])", "description": "", "templateType": "anything", "can_override": false}, "t": {"name": "t", "group": "Ungrouped variables", "definition": "list(ep*vector(v))", "description": "", "templateType": "anything", "can_override": false}, "p1": {"name": "p1", "group": "Ungrouped variables", "definition": "if(u<4,list(al*vector(x)),if(u<7,q,if(u<9,r,t)))", "description": "", "templateType": "anything", "can_override": false}, "another": {"name": "another", "group": "Ungrouped variables", "definition": "if(mm[0]=1, \"Hence this is a spanning set. \", \"There is one other simple relationship - you find this! So this is not a spanning set as it contains less than 4 linearly independent vectors.\")", "description": "", "templateType": "anything", "can_override": false}, "v3": {"name": "v3", "group": "Ungrouped variables", "definition": "if(u>6,z,if(u>3,p1,y))", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["f1", "f2", "f3", "f4", "another", "eg", "al", "ga1", "are", "ga", "ep", "es", "contains", "be1", "nt", "be", "v1", "v2", "v3", "v4", "v5", "b", "c5", "al1", "a", "c", "p1", "thismany", "mm", "t0", "q", "p2", "r", "u", "t", "v", "y", "x", "z"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

1. Is $\\{\\textbf{v}_1,\\;\\textbf{v}_2,\\;\\textbf{v}_3,\\;\\textbf{v}_4,\\;\\textbf{v}_5\\}$ a linearly independent set of vectors?  [[0]]

\n

 

\n

2. Do the above vectors form a spanning set of $\\mathbb{R}^4$? [[1]]

\n

 

\n

3. Does the set  $\\{\\textbf{v}_1,\\;\\textbf{v}_2,\\;\\textbf{v}_3,\\;\\textbf{v}_4,\\;\\textbf{v}_5\\}$ contain a linearly independent subset which forms a basis of  $\\mathbb{R}^4$?  [[2]]

", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Yes

", "

No

"], "matrix": [0, 1], "distractors": ["", ""]}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Yes

", "

No

"], "matrix": "mm"}, {"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": false, "displayType": "radiogroup", "displayColumns": 0, "showCellAnswerState": true, "choices": ["

Yes

", "

No

"], "matrix": "mm"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}]}], "contributors": [{"name": "Newcastle University Mathematics and Statistics", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/697/"}, {"name": "Ugur Efem", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18261/"}]}