// Numbas version: finer_feedback_settings {"name": "2.f Simplifying (ax^m)^(1/n)", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "2.f Simplifying (ax^m)^(1/n)", "tags": ["category: Indices"], "metadata": {"description": "

Calculate an answer involving a fractional index.

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Simplify the following expression:

\n

\\[\\left(\\var{a^n}x^\\var{m}\\right)^{\\frac{1}{\\var{n}}}\\]

", "advice": "

We take the power $\\frac{1}{\\var{n}}$ of both $\\var{a^n}$ and $x^\\var{m}$ individually.

\n

To find $\\var{a^n}^{\\frac{1}{\\var{n}}}$, we want to make use of the fact that a power of $\\frac{1}{n}$ is the same as the $n$th root. Since

\n

\\[\\var{a^n}=\\var{a}^\\var{n},\\]

\n

we have,

\n

\\[ \\var{a^n}^{\\frac{1}{\\var{n}}} =\\left(\\var{a}^\\var{n}\\right)^{\\frac{1}{\\var{n}}}=\\var{a}. \\]

\n

Finally, using the rule of indicies $\\left(a^n\\right)^m=a^{am}$, we have 

\n

\\[\\left(x^\\var{m}\\right)^{\\frac{1}{\\var{n}}}=\\left(x^{\\frac{\\var{m}}{\\var{n}}}\\right)=x^{\\var{m/n}}\\]

\n

and so putting this all together we have,

\n

\\[\\left(\\var{a^n}x^\\var{m}\\right)^{\\frac{1}{\\var{n}}}=\\var{a}x^{\\var{m/n}}.\\]

\n

\n

Use this link to find some resources which will help you revise this topic.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"n": {"name": "n", "group": "Ungrouped variables", "definition": "random(2..3)", "description": "", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,2,3,4,5)", "description": "", "templateType": "anything", "can_override": false}, "m": {"name": "m", "group": "Ungrouped variables", "definition": "random(1..3)*n", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["n", "a", "m"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a}x^{m/n}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "mustmatchpattern": {"pattern": "$n x^$n `|$n x `| x^$n `| x", "partialCredit": 0, "message": "", "nameToCompare": "", "warningTime": "submission"}, "valuegenerators": [{"name": "x", "value": ""}]}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}], "resources": []}]}], "contributors": [{"name": "Ruth Hand", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/3228/"}, {"name": "Ben McGovern", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4872/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}, {"name": "Will Morgan", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21933/"}]}