// Numbas version: exam_results_page_options {"name": "Nigel's copy of Errors in concentration and dilution", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"functions": {}, "name": "Nigel's copy of Errors in concentration and dilution", "tags": ["application", "applied", "chemistry", "concentration", "dilution", "formula"], "type": "question", "advice": "

The relative uncertainty in the volume is 

\n

\\[ R_{u_v} = \\frac{\\var{tolerance}\\text{ (mL)}}{\\var{flaskvolume*1000}\\text{ (mL)}} = \\var{relative_uncertainty_volume} \\]

\n

The relative uncertainty in the mass, for a measured mass of $m$ mg, is

\n

\\[ R_{u_m} = \\frac{\\var{accuracy}\\text{ (mg)}}{m \\text{ (mg)}} \\]

\n

The less solute you weigh out, the greater the relative uncertainty in the mass. So, the least solute you can weigh is the amount at which the relative uncertainties in volume and mass are equal.

\n

The point at which the two uncertainties are equal is

\n

\\begin{align}
R_{u_v} &= R_{u_m} & \\iff \\\\
\\var{relative_uncertainty_volume} &= \\frac{\\var{accuracy}}{m} & \\iff \\\\
m &= \\frac{\\var{accuracy}}{\\var{relative_uncertainty_volume}} & \\implies \\\\
m &= \\var{min_solute} \\text{ mg} \\\\
&= \\var{min_solute/1000} \\text{ g}
\\end{align}

", "rulesets": {}, "parts": [{"maxanswers": 0.0, "distractors": ["", ""], "prompt": "

As you weigh out more solute, the relative uncertainty in the mass is:

", "matrix": [0.0, 1.0], "minanswers": 0.0, "shufflechoices": false, "choices": ["

greater

", "

smaller

"], "displaytype": "radiogroup", "maxmarks": 0.0, "marks": 1.0, "showcorrectanswer": true, "displaycolumns": 0.0, "type": "1_n_2", "minmarks": 0.0}, {"showcorrectanswer": true, "type": "gapfill", "gaps": [{"expectedvariablenames": [], "checkingaccuracy": 0.001, "vsetrange": [0.0, 1.0], "showpreview": true, "vsetrangepoints": 5.0, "showcorrectanswer": true, "marks": 1.0, "answer": "{accuracy}/m", "checkingtype": "absdiff", "checkvariablenames": false, "type": "jme"}], "prompt": "

Write a formula for the relative uncertainty ($R_{u_m}$) in the mass $m$ mg of solute weighed out.

\n

$R_{u_m} = $ [[0]]

", "marks": 0.0}, {"showcorrectanswer": true, "type": "gapfill", "gaps": [{"precisiontype": "dp", "precisionmessage": "You have not given your answer to the correct precision.", "maxvalue": "min_solute/1000", "minvalue": "min_solute/1000", "precisionpartialcredit": 0.0, "showcorrectanswer": true, "precision": 3.0, "marks": 1.0, "showPrecisionHint": false, "type": "numberentry", "strictprecision": false}], "prompt": "

What is the minimum mass of solute that can be weighed such that the relative uncertainty in the mass is less than the relative uncertainty in the volume?

\n

[[0]]g (to 3 decimal places)

", "marks": 0.0}], "extensions": [], "statement": "

You have a balance with a quoted accuracy of ±{accuracy} mg, and a flask of volume {flaskvolume} L with a quoted tolerance of {tolerance} mL.

\n

You wish to weigh out an amount of solute and dissolve it in solvent in the flask.

", "variable_groups": [], "progress": "in-progress", "preamble": {"css": "", "js": ""}, "variables": {"flaskvolume": {"definition": "random(0.5..2.5#0.5 except 1.5)", "name": "flaskvolume"}, "relative_uncertainty_volume": {"definition": "tolerance/(1000*flaskvolume)", "name": "relative_uncertainty_volume"}, "min_solute": {"definition": "accuracy/relative_uncertainty_volume", "name": "min_solute"}, "tolerance": {"definition": "random(0.1,0.2,0.5,1,2)", "name": "tolerance"}, "accuracy": {"definition": "random(0.1,0.2,0.5,1)", "name": "accuracy"}}, "metadata": {"notes": "", "description": "", "licence": "Creative Commons Attribution 4.0 International"}, "showQuestionGroupNames": false, "question_groups": [{"name": "", "pickingStrategy": "all-ordered", "pickQuestions": 0, "questions": []}], "contributors": [{"name": "Nigel Atkins", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/275/"}]}]}], "contributors": [{"name": "Nigel Atkins", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/275/"}]}