// Numbas version: finer_feedback_settings {"name": "Relative Percentage Error 1", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Relative Percentage Error 1", "tags": [], "metadata": {"description": "
MCQ to calculate the relative percentage error in a simple multiplication.
", "licence": "None specified"}, "statement": "Gary gave the answer to $\\var{a} \\times \\var{b}$ as $\\var{error}$. What was the relative percentage error in his calculation?
", "advice": "To calculate relative percentage error we use the following:
\n$Relative \\ percentage \\ error = \\frac{absolute \\ error}{true \\ value} \\times 100$
\nIn this case:
\nTrue Value = $\\var{a} \\times \\var{b} = \\var{t_value}$
\nAbsolute Error = $|\\var{t_value}-\\var{error}|=\\var{a_error}$
\nRelative Percentage Error = $\\frac{\\var{a_error}}{\\var{t_value}} \\times 100=\\var{correct}\\%$
\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(5..60)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "random(5..60 except a)", "description": "", "templateType": "anything", "can_override": false}, "error": {"name": "error", "group": "Ungrouped variables", "definition": "(a-2)*(b)", "description": "", "templateType": "anything", "can_override": false}, "correct": {"name": "correct", "group": "Ungrouped variables", "definition": "dpformat(((a*b)-error)/(a*b)*100,1)", "description": "", "templateType": "anything", "can_override": false}, "incorrect1": {"name": "incorrect1", "group": "Ungrouped variables", "definition": "dpformat(((a*b)-error)/(error)*100,1)", "description": "", "templateType": "anything", "can_override": false}, "incorrect2": {"name": "incorrect2", "group": "Ungrouped variables", "definition": "dpformat((a*b)-error,1)", "description": "", "templateType": "anything", "can_override": true}, "t_value": {"name": "t_value", "group": "Ungrouped variables", "definition": "a*b", "description": "", "templateType": "anything", "can_override": false}, "a_error": {"name": "a_error", "group": "Ungrouped variables", "definition": "abs(t_value-error)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "error", "correct", "incorrect1", "incorrect2", "t_value", "a_error"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "Select the correct answer
\n[[0]]
", "gaps": [{"type": "1_n_2", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minMarks": 0, "maxMarks": 0, "shuffleChoices": true, "displayType": "radiogroup", "displayColumns": "1", "showCellAnswerState": true, "choices": ["$\\var{correct}$ %", "$0$ %", "$\\var{incorrect1}$ %", "$\\var{incorrect2}$ %"], "matrix": ["13", 0, 0, 0], "distractors": ["", "", "", ""]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Katie Bullen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2255/"}], "resources": []}]}], "contributors": [{"name": "Katie Bullen", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/2255/"}]}