// Numbas version: finer_feedback_settings {"name": "Logaritme- og eksponentiallikninger", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Logaritme- og eksponentiallikninger", "tags": [], "metadata": {"description": "", "licence": "None specified"}, "statement": "
Løs likningene. Avrund svaret til 2 desimaler.
", "advice": "a)
\nLøsningsformelen for en logaritmelikning på grunnform ser slik ut:
\n$\\begin{align}\\ln(x)&=a\\\\ &\\Downarrow \\\\x&=e^{a}\\end{align}$
\nVi snur på likningen og regner ut:
\n$\\begin{align}
\\simplify{{a1} ln(x)+{b1}}&=\\var{c1}\\\\
\\simplify{{a1}ln(x)} &= \\simplify[!collectNumbers]{{c1}-{b1}}\\\\
\\simplify{{a1}ln(x)}&= \\simplify{{c1}-{b1}}\\\\
\\ln(x) &= \\simplify{{{c1}-{b1}}/{{a1}}}\\\\
x &= e^{\\simplify{{{c1}-{b1}}/{{a1}}}}\\\\
\\end{align}$
$x=${precround({exp(({c1}-{b1})/{a1})},2)}
\nb)
\nLikningen $\\simplify{{a2}(ln(x))^{2}+{b2}ln(x)+{c2}=0}$ er en andregradslikning med $\\ln(x)$ som ukjent. Vi bruker da først abc-formelen for å finne $\\ln(x)$:
\n$a=\\var{a2},\\;b=\\var{b2},\\;c=\\var{c2}$
\n$\\ln(x)=\\dfrac{\\simplify{-{b2}}\\pm\\sqrt{\\simplify[!collectNumbers,timesDot]{{b2}^{2}-4*{a2}*{c2}}}}{2\\cdot\\var{a2}}=\\dfrac{\\simplify{-{b2}}\\pm\\sqrt{\\simplify{{b2}^2-4*{a2}*{c2}}}}{\\simplify{2*{a2}}}$.
\nVi to løsninger for $\\ln(x)$: $\\ln(x)= \\var{x[0]}\\text{ og } \\ln(x)=\\var{x[1]}$.
\nVi løser for $x$:
\n$\\ln(x)= \\var{x[0]}\\Rightarrow x=e^{\\var{x[0]}}=${precround(e^(x[0]),6)}$\\approx\\underline{\\underline{\\var{sol[0]}}}$
\n$\\ln(x)= \\var{x[1]}\\Rightarrow x=e^{\\var{x[1]}}=${precround(e^(x[1]),6)}$\\approx\\underline{\\underline{\\var{sol[1]}}}$
\n\nc)
\nLøsningsformelen for eksponentiallikning på grunnform ser slik ut:
\n$\\begin{align}e^{x}&=a\\\\ &\\Downarrow \\\\x&=\\ln(a)\\end{align}$
\nVi snur på likningen og regner ut:
\n$\\begin{align}
e^{\\simplify{{c1}x}}-\\var{e1}&=0\\\\
e^{\\simplify{{c1}x}}&=\\var{e1}\\\\
\\var{c1}x &= \\ln(\\var{e1})\\\\
x &=\\dfrac{\\ln(\\var{e1})}{\\var{c1}}\\\\
\\end{align}$
$x=${precround(ln(e1)/c1,2)}
\n\nd)
\nLikningen $\\simplify{{a2}e^(2*x)+{c2}e^(x)+{b2}=0}$ er en andregradslikning med $e^{x}$ som ukjent. Vi bruker da først abc-formelen for å finne $e^{x}$:
\n$a=\\var{a2},\\;b=\\var{c2},\\;c=\\var{b2}$
\n$e^{x}=\\dfrac{\\simplify{-{c2}}\\pm\\sqrt{\\simplify[!collectNumbers,timesDot]{{c2}^{2}-4*{a2}*{b2}}}}{2\\cdot\\var{a2}}=\\dfrac{\\simplify{-{c2}}\\pm\\sqrt{\\simplify{{c2}^2-4*{a2}*{b2}}}}{\\simplify{2*{a2}}}$.
\nVi to løsninger for $e^{x}$: $e^{x}= \\var{x2[0]}\\text{ og } e^{x}=\\var{x2[1]}$.
\n$e^{x}= \\var{x2[0]}\\Rightarrow x=\\ln(\\var{x2[0]})\\approx\\underline{\\underline{\\var{sol2[0]}}}$
\n$e^{x}= \\var{x2[1]}\\Rightarrow x=\\ln(\\var{x2[1]})\\approx\\underline{\\underline{\\var{sol2[1]}}}$
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "b1": {"name": "b1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "c1": {"name": "c1", "group": "Ungrouped variables", "definition": "random(-4..4 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(1..2)", "description": "", "templateType": "anything", "can_override": false}, "b2": {"name": "b2", "group": "Ungrouped variables", "definition": "random(-11..11 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "c2": {"name": "c2", "group": "Ungrouped variables", "definition": "random(-11..11 except 0) ", "description": "", "templateType": "anything", "can_override": false}, "x": {"name": "x", "group": "Ungrouped variables", "definition": "[precround(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})),6),precround(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})),6)]", "description": "", "templateType": "anything", "can_override": false}, "sol": {"name": "sol", "group": "Ungrouped variables", "definition": "[precround(e^(x[0]),2),precround(e^(x[1]),2)]", "description": "", "templateType": "anything", "can_override": false}, "disc": {"name": "disc", "group": "Ungrouped variables", "definition": "{b2}^2-4*{a2}*{c2}", "description": "", "templateType": "anything", "can_override": false}, "se1": {"name": "se1", "group": "Ungrouped variables", "definition": "ln(e1)/c1", "description": "", "templateType": "anything", "can_override": false}, "e1": {"name": "e1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "", "templateType": "anything", "can_override": false}, "disc2": {"name": "disc2", "group": "Ungrouped variables", "definition": "{c2}^2-4*{a2}*{b2}", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "[precround(1/(2*{a2})*(-{c2}-sqrt({c2}^2-4*{a2}*{b2})),6),precround(1/(2*{a2})*(-{c2}+sqrt({c2}^2-4*{a2}*{b2})),6)]", "description": "", "templateType": "anything", "can_override": false}, "sol2": {"name": "sol2", "group": "Ungrouped variables", "definition": "[precround(ln(x2[0]),2),precround(ln(x2[1]),2)]", "description": "", "templateType": "anything", "can_override": false}, "logn": {"name": "logn", "group": "Ungrouped variables", "definition": "safe(\"(ln(x))\")", "description": "", "templateType": "long plain string", "can_override": false}}, "variablesTest": {"condition": "disc>=0 and disc2>=0 and iszero(im(sol2[0])) and iszero(im(sol2[1]))", "maxRuns": 100}, "ungrouped_variables": ["a1", "b1", "c1", "a2", "b2", "c2", "x", "sol", "disc", "se1", "e1", "disc2", "x2", "sol2", "logn"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a1} ln(x)+{b1}={c1}}$
\n$x=$[[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp((c1-b1)/a1)", "maxValue": "exp((c1-b1)/a1)", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a2}{logn}^{2}+{b2}{logn}+{c2}=0}$
\n(sett inn laveste verdi først:)
\n$x=$[[0]] $\\vee$ $x=$[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})))*0.95", "maxValue": "exp(1/(2*{a2})*(-{b2}-sqrt({b2}^2-4*{a2}*{c2})))*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "exp(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})))*0.95", "maxValue": "exp(1/(2*{a2})*(-{b2}+sqrt({b2}^2-4*{a2}*{c2})))*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$e^{\\var{c1}x}-\\var{e1}=0$
\n$x=$ [[0]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ln(e1)/c1", "maxValue": "ln(e1)/c1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$\\simplify{{a2}e^(2*x)+{c2}e^(x)+{b2}=0}$
\n$x=$ [[0]] $\\vee$ $x=$ [[1]]
\n", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sol2[0]*0.95", "maxValue": "sol2[0]*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "sol2[1]*0.95", "maxValue": "sol2[1]*1.05", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "precisionType": "dp", "precision": "2", "precisionPartialCredit": 0, "precisionMessage": "You have not given your answer to the correct precision.", "strictPrecision": false, "showPrecisionHint": false, "notationStyles": ["plain", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}], "resources": []}]}], "contributors": [{"name": "Torris Bakke", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/942/"}]}