// Numbas version: finer_feedback_settings {"name": "10c. Solving x^2-c^2=0", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "10c. Solving x^2-c^2=0", "tags": [], "metadata": {"description": "
quadratic solving using difference of two squares
", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "Solve the following equation for $x$.
\n\\[\\simplify{x^2+{b}x+{c}}=0\\]
", "advice": "For a quadratic expression of this form we can make use of the Difference of Squares formula, which states that \\[a^2-b^2 = (a+b)(a-b).\\]
\nTherefore,
\n\\[\\simplify[unitFactor]{x^2-{c} = (x+{x1})(x-{x1})}.\\]
\nUse this link to find resources to help you revise how to factorise a quadratic equation using the difference of two squares formula.
", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x1": {"name": "x1", "group": "Ungrouped variables", "definition": "random(-12..12 except 0)", "description": "", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "-x1", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "x1+x2", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "x1*x2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "x2", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "student_set (The set of numbers that the student gave):\n set(x for: x of: interpreted_answers where: x<>nothing)\n\nexpected_set (The set of roots of the equation):\n set([-x1,-x2])\n\nnum_correct (The number of values in the student's set which are correct):\n len(intersection(student_set, expected_set))\n\nmark:\n if(num_correct=0,\n incorrect(\"Your answer is incorrect.\")\n , \n if(len(expected_set)=1, // there is one root\n if(len(student_set)=1, // student gave one correct root\n correct()\n , add_credit(0.5, \"One of your answers is not a root.\") // student gave one correct and one incorrect)\n )\n , // there are two roots\n switch(len(student_set)=1, // student gave one correct root and nothing else\n add_credit(0.5, \"You gave one correct root, but there is another root.\")\n , num_correct=1, // student gave one correct and one incorret\n add_credit(0.5, \"One of your answers is not a root.\")\n , // otherwise, student gave two correct answers\n correct()\n )\n )\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "x=[[0]]
\nx=[[1]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "student_empty: trim(studentAnswer)=\"\"\n\nmark:\n assert(student_empty, apply(base_mark))\n\ninterpreted_answer:\n if(student_empty, nothing, base_interpreted_answer)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-x1", "maxValue": "-x1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "student_empty: trim(studentAnswer)=\"\"\n\nmark:\n assert(student_empty, apply(base_mark))\n\ninterpreted_answer:\n if(student_empty, nothing, base_interpreted_answer)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-x2", "maxValue": "-x2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}]}