// Numbas version: finer_feedback_settings {"name": "10.h. Solving ax^2+bx+c=0 for arbitrary a", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "10.h. Solving ax^2+bx+c=0 for arbitrary a", "tags": [], "metadata": {"description": "

Factorising where a has multiple factor pairs

", "licence": "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International"}, "statement": "

Solve the following equation for $x$.

\n

\\[\\simplify{{a}x^2+{b}x+{c}}=0\\]

", "advice": "

To solve a quadratic equation of the form \\[ ax^2+bx+c=0\\] by factorisation, we want to factorise the equation into the form \\[(mx+p)(nx+q)=0,\\] where $m\\times n=a$, $m\\times q+n\\times p=b$ and $p\\times q=c$.

\n

For the equation \\[\\simplify{{a}x^2+{b}x+{c}=0},\\]

\n

the best strategy is to test different factors of $\\var{a}$ and $\\var{c}$. Writing out a table of different factors is a good way to keep track of what guesses you have tried. In this case our polynomial can be factorised to \\[\\simplify{({a1}x+{Fact1})({a2}x+{Fact2})=0}.\\] This equation is satisfied when either \\[\\simplify{{a1}x+{Fact1}=0} \\quad \\text{or} \\quad \\simplify{{a2}x+{Fact2}=0}, \\] which implies the solutions to this quadratic equation are \\[ \\simplify[fractionNumbers]{x={-x1}} \\quad \\text{and} \\quad \\simplify[fractionNumbers]{x={-x2}} .\\]

\n

Use this link to find resources to help you revise how to solve quadratic equations.

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"x1": {"name": "x1", "group": "Ungrouped variables", "definition": "Fact1/a1", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "x2": {"name": "x2", "group": "Ungrouped variables", "definition": "Fact2/a2", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "a1*Fact2+a2*Fact1", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "Fact1*Fact2", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "a1": {"name": "a1", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "Fact1": {"name": "Fact1", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "a2": {"name": "a2", "group": "Ungrouped variables", "definition": "random(2..5)", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "a": {"name": "a", "group": "Ungrouped variables", "definition": "a1*a2", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}, "Fact2": {"name": "Fact2", "group": "Ungrouped variables", "definition": "random(-12..12)", "description": "

polynomial factorises as (a1x+Fact1)(a2x+Fact2), x1=Fact1/a1, x2=Fact2/a2

", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["x1", "x2", "a", "b", "c", "a1", "a2", "Fact2", "Fact1"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "student_set (The set of numbers that the student gave):\n set(x for: x of: interpreted_answers where: x<>nothing)\n\nexpected_set (The set of roots of the equation):\n set([-x1,-x2])\n\nnum_correct (The number of values in the student's set which are correct):\n len(intersection(student_set, expected_set))\n\nmark:\n if(num_correct=0,\n incorrect(\"Your answer is incorrect.\")\n , \n if(len(expected_set)=1, // there is one root\n if(len(student_set)=1, // student gave one correct root\n correct()\n , add_credit(0.5, \"One of your answers is not a root.\") // student gave one correct and one incorrect)\n )\n , // there are two roots\n switch(len(student_set)=1, // student gave one correct root and nothing else\n add_credit(0.5, \"You gave one correct root, but there is another root.\")\n , num_correct=1, // student gave one correct and one incorret\n add_credit(0.5, \"One of your answers is not a root.\")\n , // otherwise, student gave two correct answers\n correct()\n )\n )\n )", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

x=[[0]]

\n

x=[[1]]

", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "student_empty: trim(studentAnswer)=\"\"\n\nmark:\n assert(student_empty, apply(base_mark))\n\ninterpreted_answer:\n if(student_empty, nothing, base_interpreted_answer)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-x1", "maxValue": "-x1", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "student_empty: trim(studentAnswer)=\"\"\n\nmark:\n assert(student_empty, apply(base_mark))\n\ninterpreted_answer:\n if(student_empty, nothing, base_interpreted_answer)", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": false, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "-x2", "maxValue": "-x2", "correctAnswerFraction": true, "allowFractions": true, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}], "resources": []}]}], "contributors": [{"name": "Mash Sheffield", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4679/"}, {"name": "Andrew Neate", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/21832/"}]}