// Numbas version: finer_feedback_settings {"name": "Canonical form", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Canonical form", "tags": [], "metadata": {"description": "

Solve an ODE by first writing it in canonical form.

", "licence": "All rights reserved"}, "statement": "

Consider the homogeneous, 2nd-order ODE \\[\\simplify{{b}x}\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}x^2} + \\var{a}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} - \\simplify[fractionNumbers,zeroPower,unitFactor]{{b/c^2}x^{1-2a/b}y} = 0\\,.\\]

", "advice": "

a) To put this equation into symmetric form, we first divide by $\\simplify{{b}x}$ to get \\[\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}x^2} + \\simplify{{a}/({b}x)}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x} - \\simplify[fractionNumbers,zeroPower,unitFactor]{{1/c^2}x^{-2a/b}y} = 0\\,.\\]

\n

We then multiply by $\\exp\\left(\\int\\simplify{{a}/({b}x)}\\,\\mathrm{d}x\\right) = \\simplify{x^({a}/{b})}$, after which the first two terms can be combined in the form

\n

\\[\\dfrac{\\mathrm{d}}{\\mathrm{d}x}\\left[\\simplify{x^({a}/{b})}\\dfrac{\\mathrm{d}y}{\\mathrm{d}x}\\right] - \\simplify[fractionNumbers,zeroPower,unitFactor]{{1/c^2}x^{-a/b}y} = 0\\,.\\]

\n

We therefore have $A = \\var[fractionNumbers]{a/b}$ and $B = \\var[fractionNumbers]{-1/c^2}$.

\n

b) This change of variable is designed so that \\[\\simplify{x^({a}/{b})}\\dfrac{\\mathrm{d}}{\\mathrm{d}x} = \\dfrac{\\mathrm{d}}{\\mathrm{d}t}\\,.\\]

\n

Hence the equation becomes simply \\[\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}t^2} - \\simplify[fractionNumbers,unitFactor]{{1/c^2}y} = 0\\,,\\]

\n

so $c = \\var{c}$.

\n

c) The equation in its canonical form has constant coefficients, and so we can solve it simply by looking for solutions of the form $y = \\exp(mt)$ where $m$ is a constant.  The general solution can be written as

\n

\\[y = C\\exp(t/\\var{c}) + D\\exp(-t/\\var{c})\\,,\\]

\n

where $C$ and $D$ are arbitrary constants.  Writing this in terms of the original variable, $x$, we have

\n

\\[y = C\\exp\\left(\\simplify[fractionNumbers]{{b/c/(b-a)}x^{1-a/b}}\\right) + D\\exp\\left(\\simplify[fractionNumbers]{{-b/c/(b-a)}x^{1-a/b}}\\right)\\,.\\]

\n

The solution that meets the given boundary conditions has $C = D = \\dfrac{1}{2}$, and can be written as

\n

\\[y = \\cosh\\left(\\simplify[fractionNumbers]{{b/c/(b-a)}x^{1-a/b}}\\right)\\,.\\]

", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"a": {"name": "a", "group": "Ungrouped variables", "definition": "random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "b": {"name": "b", "group": "Ungrouped variables", "definition": "{a}+random(1,2,3)", "description": "", "templateType": "anything", "can_override": false}, "c": {"name": "c", "group": "Ungrouped variables", "definition": "random(2,3)", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["a", "b", "c"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

The symmetric form for this equation is \\[\\dfrac{\\mathrm{d}}{\\mathrm{d}x}\\left[x^A\\dfrac{\\mathrm{d}y}{\\mathrm{d}x}\\right] + Bx^{-A}y = 0\\,\\] where $A$ and $B$ are constants.  Enter the values of $A$ and $B$ below.

\n

$A = $ [[0]] and $B = $ [[1]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{a/b}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}, {"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{-1/c^2}", "answerSimplification": "fractionNumbers", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Rewrite the equation in its canonical form.  You should find that the required change of variable is $t = \\simplify[fractionNumbers]{{b/(b-a)}x^{1-a/b}}$, and that the canonical form is \\[\\dfrac{\\mathrm{d}^2y}{\\mathrm{d}t^2} - \\frac{1}{c^2}y = 0\\,\\] where $c$ is a positive integer.  Enter the value of $c$ below.

\n

$c = $ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "{c}", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": []}], "sortAnswers": false}, {"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [{"variable": "c", "part": "p1g0", "must_go_first": false}], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "

Obtain the general solution of the ODE and then find the particular solution for $y(x)$ that satisfies the boundary conditions $y=1$ and $\\dfrac{\\mathrm{d}y}{\\mathrm{d}x}=0$ at $x=0$.  Type this solution into the box below

\n

$y(x) = $ [[0]]

", "gaps": [{"type": "jme", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "answer": "cosh({b/c/(b-a)}x^{1-a/b})", "showPreview": true, "checkingType": "absdiff", "checkingAccuracy": 0.001, "failureRate": 1, "vsetRangePoints": 5, "vsetRange": [0, 1], "checkVariableNames": false, "singleLetterVariables": false, "allowUnknownFunctions": true, "implicitFunctionComposition": false, "caseSensitive": false, "valuegenerators": [{"name": "x", "value": ""}]}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Toby Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/400/"}]}]}], "contributors": [{"name": "Toby Wood", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/400/"}]}