// Numbas version: finer_feedback_settings {"name": "Chemical Thermodynamics: Logarithm Practice - Base 10", "extensions": [], "custom_part_types": [], "resources": [], "navigation": {"allowregen": true, "showfrontpage": false, "preventleave": false, "typeendtoleave": false}, "question_groups": [{"pickingStrategy": "all-ordered", "questions": [{"name": "Chemical Thermodynamics: Logarithm Practice - Base 10", "tags": [], "metadata": {"description": "
Public
", "licence": "Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International"}, "statement": "Calculate $x$ in the following expressions (you should try to do this without using a calculator, if possible):
", "advice": "Logarithms
\nYou can think of a logarithm as a question, written symbolically - the expression:
\n$\\mathrm{log}_x(y)$
\nmeans \"$x$ raised to which power (or 'index') equals $y$ ?\".
\n\nThe answer to this question is the value of our logarithm, so if $x^z=y$, then the answer to our question would be $z$, and so this would also be the value of our logarithm:
\n$\\mathrm{log}_x(y)=z$ .
\n\n\n\nQuestion 1
\nFor the first problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log_{_{10}}(\\var{arg1[n1]})}$ .
\n\nTo find this, we must simply answer the question \"$10$ raised to which power equals $\\var{arg1[n1]}$ ?\" .
\nYou will probably know that $10^{\\var{ans1}}=\\var{arg1[n1]}$ , so the answer to our question is $\\var{ans1}$ . Thus,
\n$x=\\mathrm{log_{_{10}}(\\var{arg1[n1]})}=\\var{ans1}$ .
\n\n\n\nQuestion 2
\nFor the second problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log_{_{10}}(\\var{arg2[n2]})}$ .
\n\nTo find this, we must simply answer the question \"$10$ raised to which power equals $\\var{arg2[n2]}$ ?\" .
\nIf you are familiar with negative indices, you will probably know that $10^{\\var{ans2}}=\\frac{1}{10^{\\var{positiveans2}}}=\\var{arg2[n2]}$ , so the answer to our question is $\\var{ans2}$ . Thus,
\n$x=\\mathrm{log_{_{10}}(\\var{arg2[n2]})}=\\var{ans2}$ .
\n\n\n\nNote: If you are unfamiliar with negative indices, you just need to know this simple rule: $x^{-y}=\\frac{1}{x^y}$ , e.g. $3^{-2}=\\frac{1}{3^2}=\\frac{1}{9}$ .
\n\n\nQuestion 3
\nFor the third problem, we must calculate the value of a logarithm:
\n$x=\\mathrm{log_{_{10}}(\\var{arg3[n3]})}$ .
\n\nTo find this, we must simply answer the question \"$10$ raised to which power equals $\\var{arg3[n3]}$ ?\" .
\nThe answer to this question is trivial; we are already shown the power plainly - the answer to our question is $\\var{ans3[n3]}$ . Thus,
\n$x=\\mathrm{log_{_{10}}(\\var{arg3[n3]})}=\\var{ans3[n3]}$ .
\n\n\n\nQuestion 4
\nFor the fourth problem, $x$ is not the value of a logarithm; it is the argument of one:
\n$\\mathrm{log_{_{10}}}(x)=\\mathrm{(\\var{int})}$ .
\n\nTo find $x$, let's consider the question the logarithm represents: \"$10$ raised to which power equals $x$ ?\" .
\nAs we are given the value of the logarithm, we know the answer to this question: $\\var{int}$ .
\nThis is the \"power\" mentioned in the question, so we actually know that: \"$10$ raised to the power of $\\var{int}$ equals $x$\" .
\nThus, $x=10^{\\var{int}}=\\var{ans4}$ .
\n\n\n\n\nNote: Alternatively, we can simply invert the logarithm mathematically - to invert a logarithm, for both sides of the equation, we change the expression to the logarithm's base (in this case $10$) to the power of the original expression. Thus:
\n$\\mathrm{log_{_{10}}}(x)=\\mathrm{(\\var{int})}$
\n\n$\\mathrm{\\Rightarrow\\space\\space\\space }x=\\mathrm{10^{\\var{int}}=\\var{ans4}}$ .
\n", "rulesets": {}, "extensions": [], "builtin_constants": {"e": true, "pi,\u03c0": true, "i": true, "j": false}, "constants": [], "variables": {"arg1": {"name": "arg1", "group": "Ungrouped variables", "definition": "[ 10, 100, 1000, 10000 ]", "description": "", "templateType": "list of numbers", "can_override": false}, "n1": {"name": "n1", "group": "Ungrouped variables", "definition": "random(0 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "arg2": {"name": "arg2", "group": "Ungrouped variables", "definition": "[ 0.1, 0.01, 0.001, 0.0001 ]", "description": "", "templateType": "list of numbers", "can_override": false}, "n2": {"name": "n2", "group": "Ungrouped variables", "definition": "random(0 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "arg3": {"name": "arg3", "group": "Ungrouped variables", "definition": "[ \"$\\\\mathrm{10^0}$\", \"$\\\\mathrm{10^1}$\", \"$\\\\mathrm{10^2}$\", \"$\\\\mathrm{10^3}$\", \"$\\\\mathrm{10^4}$\", \"$\\\\mathrm{10^{-1}}$\", \"$\\\\mathrm{10^{-2}}$\", \"$\\\\mathrm{10^{-3}}$\", \"$\\\\mathrm{10^{-4}}$\" ]", "description": "", "templateType": "list of strings", "can_override": false}, "n3": {"name": "n3", "group": "Ungrouped variables", "definition": "random(0 .. 8#1)", "description": "", "templateType": "randrange", "can_override": false}, "ans2": {"name": "ans2", "group": "Ungrouped variables", "definition": "log(arg2[n2])", "description": "", "templateType": "anything", "can_override": false}, "ans3": {"name": "ans3", "group": "Ungrouped variables", "definition": "[ 0, 1, 2, 3, 4, -1, -2, -3, -4 ]", "description": "", "templateType": "list of numbers", "can_override": false}, "ans1": {"name": "ans1", "group": "Ungrouped variables", "definition": "log(arg1[n1])", "description": "", "templateType": "anything", "can_override": false}, "int": {"name": "int", "group": "Ungrouped variables", "definition": "random(-3 .. 3#1)", "description": "", "templateType": "randrange", "can_override": false}, "ans4": {"name": "ans4", "group": "Ungrouped variables", "definition": "10^({int})", "description": "", "templateType": "anything", "can_override": false}, "positiveans2": {"name": "positiveans2", "group": "Ungrouped variables", "definition": "-ans2", "description": "", "templateType": "anything", "can_override": false}}, "variablesTest": {"condition": "", "maxRuns": 100}, "ungrouped_variables": ["arg1", "n1", "ans1", "arg2", "n2", "ans2", "arg3", "n3", "ans3", "int", "ans4", "positiveans2"], "variable_groups": [], "functions": {}, "preamble": {"js": "", "css": ""}, "parts": [{"type": "gapfill", "useCustomName": false, "customName": "", "marks": 0, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "prompt": "$x=\\mathrm{log_{_{10}}(\\var{arg1[n1]})}$
\n[[0]]
\n\n\n$x=\\mathrm{log_{_{10}}(\\var{arg2[n2]})}$
\n[[1]]
\n\n\n$x=\\mathrm{log_{_{10}}(\\var{arg3[n3]})}$
\n[[2]]
\n\n\n$\\mathrm{log_{_{10}}}(x)=\\mathrm{\\var{int}}$
\n[[3]]
", "gaps": [{"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans1", "maxValue": "ans1", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans2", "maxValue": "ans2", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans3[n3]", "maxValue": "ans3[n3]", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}, {"type": "numberentry", "useCustomName": false, "customName": "", "marks": 1, "scripts": {}, "customMarkingAlgorithm": "", "extendBaseMarkingAlgorithm": true, "unitTests": [], "showCorrectAnswer": true, "showFeedbackIcon": true, "variableReplacements": [], "variableReplacementStrategy": "originalfirst", "nextParts": [], "suggestGoingBack": false, "adaptiveMarkingPenalty": 0, "exploreObjective": null, "minValue": "ans4", "maxValue": "ans4", "correctAnswerFraction": false, "allowFractions": false, "mustBeReduced": false, "mustBeReducedPC": 0, "displayAnswer": "", "showFractionHint": true, "notationStyles": ["plain", "en", "si-en"], "correctAnswerStyle": "plain"}], "sortAnswers": false}], "partsMode": "all", "maxMarks": 0, "objectives": [], "penalties": [], "objectiveVisibility": "always", "penaltyVisibility": "always", "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}], "resources": []}]}], "contributors": [{"name": "Frances Docherty", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/4059/"}, {"name": "Michael McFadden", "profile_url": "https://numbas.mathcentre.ac.uk/accounts/profile/18132/"}]}